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ABSTRACT 

We have developed a pair of metrics for the 
quantitative evaluation of the performance of 
pedestrian detection systems. The Metric of 
Similarity was designed to be used to assess how well 
the pedestrian-detection output of an infra-red Night 
Vision system matches its ground truth, that is, the 
relative level of fit or agreement between the 
locations in an image frame (measured in pixels) 
where the system indicates it has detected pedestrians 
and the locations in the frame where there actually 
are pedestrians. In contrast, the Metric of Salience 
was designed to be used to infer the level of 
acceptance of the system by a typical driver. These 
are complementary dimensions of system 
performance.   

INTRODUCTION 

The design of active safety systems is an iterative, 
evolutionary process.  Designers continually strive to 
improve sensor technology, alerting software, and 
display design, leading to the production of new 
generations of commercially available systems.  In 
response, system users (drivers, customers) become 
more sophisticated and demanding, providing 
feedback to designers and establishing a self-
reinforcing cycle of system improvement.   

Successive generations of systems need to be 
compared to ascertain not only their strengths and 
weaknesses but also their relative levels of driver 
acceptance (Källhammer, Smith, Karlsson, & 
Hollnagel, 2007).  Designers seek to compare 
systems developed by different providers.  The 
process of comparing the strengths, weaknesses, and 
relative levels of driver acceptance of active safety 
systems requires objective, replicable, and readily 
comprehensible metrics.  This paper discusses the 
development of two complementary metrics designed 
to enable both designers and safety raters assess 

successive generations or alternative active safety 
systems.   

The occasion that prompted the development of the 
metrics was an EU-sponsored project aimed at 
demonstrating the feasibility of fusing two infra-red 
‘Night Vision’ pedestrian detections systems that use 
different sensor systems (European Union 7th 
Framework Programme, 2011).  In the discussion that 
follows, we focus on pedestrian detection systems but 
mean to imply that our discussion generalizes to a 
wide range of active safety systems.  Further, we use 
the verb ‘detect’ to mean not only that the sensor has 
picked up a pedestrian but also that the software and 
in-vehicle display have highlighted the detected 
pedestrian to the driver.   

The role of metrics in system comparison 

Figure 1 is a Venn diagram of a situation frequently 
faced by designers seeking to assess the relative 
merits of two pedestrian detection systems.  System 
X and system Y are represented by the two large 
overlapping squares.  The letters and symbols 
represent 10 pedestrian encounters.  There are nine 
instances of pedestrian detection, seven by each 
system.  Five pedestrians are detected by both 
systems but one is detected by neither.  Both systems 
appear serviceable but in need of improvement.  If 
designers were presented with systems X and Y, they 
would face the quandary of weighing the relative 
merits of two imperfect systems.  Given the non-
hypothetical nature of this quandary, designers need 
metrics that enable them to identify classes of events 
(pedestrian encounters) or incidents for which one 
system or the other excels.  The system that performs 
better in more situations is likely to be preferred.   

If systems X and Y were to represent successive 
generations of a commercial product, its designers 
would likely need metrics that enable them to scan 
large volumes of field data to indentify when, where 
their system failed to detect a pedestrian who should 
have been detected, and the relative severity of that  
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Figure 1.  Venn diagram of two capable systems, 
system X and system Y.  While both systems 
correctly detect most pedestrians, each misses 
some that the other detects.  x: correct detections 
by system X only.  y: correct detections by system 
Y only.  +:  correct detections by both systems.  - : 
a pedestrian missed by both systems. 

failure. A simple error count is not sufficient, as the 
severity of each error is not uniform; a system with 
fewer errors may have more severe failures.  Further, 
system designers need to know whether or not drivers 
consider a detected pedestrian to be worthy of an 
alert.  It does no one any good to market a system 
that issue alerts that drivers deem to be nuisances 
(Källhammer, in press). 

The only time when metrics are not needed is the rare 
case sketched in Figure 2 in which the performance 
of one system dominates the other.   

Data 

The metrics were developed given firm constraints 
imposed by the nature of the data.  For system X, a 
Far Infra-Red (FIR) pedestrian detection system, we 
were provided three sets of data, sequences of FIR 
images containing pedestrians and two sets of 
numerical data.  The first set of numerical data was a 
list of the frame-by-frame coordinates of rectangles 
surrounding the actual locations of pedestrians in the 
images measured in pixels with respect to the upper 
left corner of the image.  This data set we call the 
‘Ground truth’, set G.  The second set of numerical 
data was a list of the ‘System output’, set S, the 
coordinates of rectangles used by the system to 
highlight detected pedestrians to the driver.  All 
entries to both numerical data sets consisted of (x,y) 
pairs of coordinates that contained no direct 
information about the distance to a pedestrian.   

 

Figure 2.  Venn diagram of two systems, X and Y, 
in which system X dominates system Y.  x: 
corrected detections by system X only.  +:  correct 
detections by both systems. 

The data constrained our task to devising quantitative 
metrics that define the fit of set S to set G.  The 
degree of fit between sets affords identification of 
pedestrians that the system detected and those that it 
missed.  It also affords discrimination of the 
similarity of the pedestrians’ actual locations in the 
images and the locations highlighted by the system.   

We were also provided a second set of system output 
data from a prototype system Y.  These data were 
acquired at the same time as set G.  This afforded 
comparison of the performance of systems X and Y. 

METHOD 

In this section we discuss our approach to developing 
the Metrics of Similarity and Salience.  We begin by 
discussing a series of thought experiments, and a lab 
experiment, and their implications for the formulation 
of the metrics.  We introduce the mathematical 
foundations of the metrics before turning to their  
formulations.   

Thought experiments 

The first step was to conduct thought experiments 
about the constraints on system performance imposed 
by drivers and system designers.  We considered one 
constraint imposed by engineering concerns - the 
differential impact of misses and false alarms - and 
two constraints imposed by driver concerns - 
pedestrian location and proximity.  

     Miss detections and false alarms  The first 
thought experiment addressed whether the two types 
of error that might be observed in the data - missed 
detections and false alarms - are equally important to 
system designers (and drivers).  Figure 3 sketches our 



Smith  3

thinking.  In the upper panel, Figure 3a, a pedestrian 
is visible (set G) but is not highlighted by the system 
- there is no detection box from set S.  This is a 
missed detection and is an error that, in certain 
circumstance, drivers and system designers would 
surely want to avoid.   

a 

b 

Figure 3. (A) An unhighlighted pedestrian (a miss) 
is worse than (B) a false alarm. 

In contrast, Figure 3b shows a scene where there is 
no pedestrian but there is a detection box.  This 
situation is a false alarm;  the system issued an 
indefensible alert.  Our analysis suggested that 
engineers will continue to refine their algorithms to 
suppress it (Smith, 2010).   

Accordingly, this thought experiment led us to 
conclude that missed detections matter more than 
false alarms when it comes to pedestrian detection 
and to develop metrics that reflect this asymmetry.   

     Directly ahead is highly salient  The second 
question we addressed was whether the location of 
the pedestrian matters to drivers (and system 
designers).  This question has two parts.  Does 
translation in the vertical dimension matter?  Does 
lateral position matter?  Our answers were No to the 
vertical dimension and Yes to lateral position.   

We answered the first by finding descriptive statistics 
for the vertical locations of pedestrians in data set G.  
We found that the variance of the location of 
pedestrians’ feet in the vertical direction was small.  
This means that pedestrians in our data set do not 
translate vertically in the images.  Generally, they do 
not start at the top of the frame and migrate to the 
bottom.  They usually stand or walk somewhere 
below the middle of the frame.  We concluded that 
our metrics did not have to consider the vertical 
component of pedestrian location.   

Figure 4 sketches our thinking about the lateral 
component of pedestrian location.  In Figure 4a, a 

pedestrian is detected near the center of the image.  In 
practice this means the pedestrian is more or less 
directly in front of the car.  If the pedestrian stood 
still and the car continued straight, there would be a 
collision.  This is a situation for which an alert would 
certainly be welcomed by drivers, system designers, 
and safety raters.  In contrast, Figure 4b shows a 
pedestrian near the edge of the image.  In an urban 
environment such a pedestrian might be walking on 
the sidewalk.  Drivers seldom want to be alerted to 
pedestrians on the sidewalk.  In contrast, in a rural 
environment, the pedestrian would likely be walking 
on the edge of the road, facing traffic.  Drivers would 
likely welcome an alert to this pedestrian.  This 
thought experiment led us to conclude that the 
salience of lateral location is contextually sensitive.  
Accordingly, we assign a greater weight to 
pedestrians in the center of the image than to those 
near the edges and retain the ability to adjust the 
weighting formula as a function of traffic context.  

a 

b 

Figure 4.  (A) A pedestrian in the center of the 
image is more salient than (B) a pedestrian on 
near the edge of the image. 

     Near is more salient than far  The final thought 
experiment that shaped the development of the 
metrics concerned the proximity of pedestrians.  A 
pedestrian who is relatively close to the car is at a 
greater risk of being hit by the car than a pedestrian at 
a greater distance.  This situation is illustrated in 
Figure 5. 

As the raw data are two dimensional projections of 
three dimensional space and the objects within it 
(e.g., pedestrians), there is no direct information 
about distance to pedestrians in the images.  There 
are however two alternative approaches to inferring 
distance.  The better method is to define the horizon 
and to find how far below the horizon the pedestrian 
is standing.  This method was unavailable to us as the 
data sets do not contain information about the 
location of the horizon.  The fall-back method is to 
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use pedestrian height as a proxy for proximity.  As 
the car approaches, a pedestrian’s apparent height 
increases.  Both sets G and S contain information 
about pedestrian height.   

 
Figure 5.  Closer people pose a greater risk of 
collision.  Closer people appear taller. 

A pedestrian in the far distance is only a few pixels 
high.  Our analysis suggested that the salience of a 
distant pedestrian to the driver is minimal.  In 
contrast, there comes a time (distance) when the 
pedestrian becomes salient to the driver.  At this ill-
defined threshold, represented by the blue line in 
Figure 6, the pedestrian becomes a meaningful object 
that may influence driving behavior.  Pedestrians 
closer than this threshold are only marginally more 
meaningful than they were at the threshold.  These 
considerations suggest that the subjective mapping 
from height to the relative level of perceived risk is 
not linear.  Rather, it is more likely to have a sigmoid 
form where the steep ramp occurs in the vicinity of 
the threshold distance, as sketched in Figure 6.  This 
thought experiment led us to develop a sigmoid 
weighting function of pedestrian height to capture the 
influence of pedestrian proximity on driving 
behavior.  

Laboratory experiment 

The second step in the development of the metrics 
was to conduct a laboratory experiment that asked a 
representative sample of adult drivers to view a 
selected set of 15 second-long videos of pedestrian 
encounters recorded by the pedestrian detection 
system.  Output (colored rectangles) from the 
pedestrian detection system, set S, was superposed on 
the videos.  The participants viewed a sequence and 
then, individually, immediately rated the performance 
of the system. The procedure is discussed in detail by 
Källhammer & Smith (in press) and Smith and 
Källhammer (2010).   

 
Figure 6.  A sigmoid function relating height - our 
proxy for proximity - to relative risk. 

Two findings emerged from this study.  First, the 
participants reinforced our conclusions from the 
thought experiments.  As expected, they were 
relatively unconcerned about false alarms but rated 
the system poorly whenever pedestrians went 
undetected.  It appears that drivers do find missed 
detections more salient than false alarms.  Further, 
the participants were less tolerant of missed 
detections when pedestrians stood in or crossed the 
road than when they stood or walked on the side of 
the road.  We were unable to test for differential 
responses to proximity and distance because every 
pedestrian in the vido clips initially appeared in the 
far distance and loomed large as the vehicle drove 
past.   

Second, participants were sensitive to both the 
recency and duration of the missed detection.  
Recency and duration are two factors long known to 
influence the memorability of stimuli (e.g., Baddeley 
& Hitch, 1993;  Greene, 1986;  Pavlov, 1927;  Pieters 
& Bijmolt, 1997;  Seamon, March & Brody, 1984).  
Recency refers to the time gap between the 
experience and its recall.  Duration refers to the 
amount of time consumed by an event.  For our 
application, recency reflects the time between (a) the 
last frame in the video clip in which a pedestrian was 
not detected and (b) the act of rating system 
performance for that clip.  Similarly, duration is the 
composite time that a pedestrian went undetected in 
the video clip.  This finding led us to conclude that 
recency and duration influence drivers’ perception of 
the salience of missed detections and, hence, the 
relative levels at which they rate system performance.   

Asymmetric distance between sets 

When the system fails to detect a pedestrian, set G 
contains more elements than set S.  Set S contains 
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more elements when the system posts a false alarm.  
The expectation of inequality in set size led us to use 
a MaxiMin formula to compare sets. 

We calculate the distance D from one set to the other 
using the MaxiMin expression of Equation 1: 

 

D A,B( )= maxa∈A minb∈B k × d a,b( )[ ]{ } (1). 

where a and b are points in the sets A and B, 
respectively, and d(a, b) is the Euclidian distance 
between them.  The free parameter k is a sigmoid 
weighting function that ranges from 0.0 to 1.0, like 
that shown in Figure 6, to map pedestrian height to 
the relative level of perceived risk.   

When there are a different number of elements in sets 
A and B, D(A,B) is generally not equal to D(B,A).  
To appreciate this fundamental asymmetry, consider 
the situation sketched in Figure 7.  Here there is one 
member of S at 10, and two of G at 12 and 17: the 
system finds one pedestrian but there are actually two 
in the image.  Assuming for simplicity that k = 1, the 
distance D(G, S) is 7, the maximum of two values 
(12-10) and (17-10).  In contrast, the distance D(S, 
G) is the maximum of the minimum of the couplet 
(10-12, 10-17), that is, the minimum of 2 and 7. 
[Euclidean distance is always positive as it is in the 
world.]  The minimum of the couplet is 2 and the 
maximum of this minimum is also 2.  Hence in this 
example the distance D(G, S) is 7 and the distance 
D(S, G) is 2.  

 
Figure 7.  A hypothetical case with one system 
detection (set S) and two pedestrians (set G). 

The important point here is that the situation shown 
in Figure 7 represents a miss - there are fewer 
elements in the system output than in the ground 
truth.  The asymmetry of the distance calculation 
allows us to differentiate the effects of misses and 
false alarms.  The calculation D(G, S) is a measure of 
the effect of a miss.  The calculation D(S, G) is the 
measure of the effect of a false alarm.  Here there is a 
miss and, accordingly, D(G, S) > D(S, G).  This is a 
useful characteristic given that drivers and safety 
raters can be expected to show greater concern for 
misses than for false alarms (Smith, Schweiger, Ritter 
& Källhammer, 2011).   

The Metric of Similarity 

The Metric of Similarity is the normalized sum of 
two weighted MaxiMin distances, Equation 2.  We 
apply two sets of weights.  The free parameter α ∈ 
[0, 1] differentially weights misses and false alarms.  
For the pedestrian detection task, a miss receives the 
greater weight (e.g., α = 0.9).  The differential 
weighting emphasizes the asymmetry of the two 
components of the sum.  The second weight k (shown 
in Equation 1) scales pedestrians by their height in 
the ground-truth image using a sigmoid function.  
Normalizing by the half-width of the image W/2 
constrains the metric to values between 0.0 and 1.0.  
Because distance is a measure of difference and our 
goal is a metric of similarity, the normalized sum is 
subtracted from 1 to produce a Metric of Similarity, 
M. 

 

M =1−
α ×D G,S( )+ 1−α( )×D S,G( )[ ]

W
2

 (2). 

The metric equals 1.0 when the system highlights 
every pedestrian at the same position as the ground 
truth.  It equals 1-α in the worst case – the situation 
shown in Figure 3a in which an undetected pedestrian 
is standing directly in front of the vehicle at a 
distance where collision is immanent.  To understand 
why the minimum value of the metric is 1-α, assume 
that the image frame shown in Figure 3a is 20 pixels 
wide and that the undetected pedestrian is standing 
directly in front of the vehicle at pixel 10.  Further, in 
this worst case, the value of k is 1.0 because the 
pedestrian is near the vehicle.  The value of D(G,S) is 
max{min[10]} and the value of D(S,G) is zero.  
Substituting into Equation 2 yields 1-[10 α - 0]/(20/2) 
which equals 1-α. 

The Metric of Similarity is calculated for each frame 
in a sequence and plotted as function of time.  An 
example is shown in Figure 8.  If desired, the values 
can be summed using moving window to provide an 
aggregate measure of system performance per unit 
time.   

The Metric of Salience 

The Metric of Salience aims to predict the relative 
level of post-hoc salience of a pedestrian event to the 
average driver.  Salience is expected to increase as 
the subjective experience of risk increases.   

The formulation of the Metric of Salience reflects the 
importance of recency and duration on the 
memorability of failures to detect pedestrians.  
Equation 1 is used frame-by-frame to find the 
pedestrian in each frame who is associated with the  
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Figure 8.  A time trace of the metric of similarity.  
Similarity, the goodness of fit of system output to 
the ground truth, increases to the right. 

greatest distance from a system detection rectangle.  
We identify that pedestrian as Max(D(G,S)t) – the 
most salient pedestrian in the image at time t.  We 
then find the duration of sequential frames in which a 
pedestrian qualifies as Max(D(G,S)t) and multiple the 
duration by a sigmoid function of recency that 
preferentially emphasizes missed detections late in 
the sequence of frames.  The product is a single 
number that predicts the relative level of salience of 
missed detections by the system during sequence of 
frames.   

RESULTS 

We have applied the Metric of Similarity to 57 digital 
recordings of the output of an FIR pedestrian 
detection system and the corresponding ground truth 
data set. The sequences contain both urban and rural 
driving.   

Low values of the metrics pointed to two 
opportunities for improving system performance: 
reducing the lag in system response and training the 
system to highlight pedestrians who assume odd 

poses. The metrics have led designers to focus on 
these issues as they develop the next generation of 
Night Vision systems with pedestrian detection.   

We have also used the Metric of Similarity to scan a 
large data set that made it possible to compare the 
output from two Night Vision systems, an FIR 
system and a prototype system.  Both systems 
performed well but, on occasion, failed to detect 
pedestrians.  The metric simplified the task of 
identifying classes of encounters associated with 
missed detections.  These classes were found to be 
essentially mutually exclusive.  This result is ably 
represented in schematic form by Figure 1.   

Figure 9 shows the match between the Metric of 
Salience and the average ranks of the ratings 
provided by participants in the laboratory study.  We 
converted raw ratings data to ranks to correct for 
individual differences in scale use across participants.  
The lower the rank, the greater the satisfaction with 
the performance of the Night Vision system.  Video 
clips that received low ranks contained undetected 
pedestrians that our raters expected the system to 
highlight.  The high level of concordance among 
raters justifies aggregation of the ranks to calculate 
the average rank.  The correlation between the metric 
salience and the average ranks of the reviewers’ 
rating is high, r = .81.  It appears that the metric 
predicts the relative level with which drivers are 
likely to be displeased when a system fails to issue an 
alert to an at-risk pedestrian.   

 

Figure 9.  Cross-plot of the metric of salience and 
the average ranks of the ratings provided by 
reviewers of video clips containing pedestrian 
encounters. 
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DISCUSSION 

The primary limitation of the methods is their 
reliance on the height of a pedestrian as the proxy for 
risk.  This shortchanges children.  Accordingly, we 
plan to revise the metrics by replacing pedestrian 
height with the distance estimate used by the systems 
in their detection task. 

The two metrics quantify system performance along 
complementary dimensions.  The Metric of Similarity 
provides a time-trace and composite score of system 
performance.  The Metric of Salience provides a 
snap-shot prediction of driver acceptance of system 
output. By applying the metrics, original equipment 
manufacturers and suppliers have been able to 
identify factors that contribute to user acceptance of 
Night Vision systems and their performance.   
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