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ABSTRACT 
 
Recent times have seen an increased interest in technologies of driver assistance. Understanding the driver’s 
current status is crucial for the implementation of Advanced Driver Assistance System (ADAS) and Driver 
Status Monitoring (DSM). Emotional factors such as anger have been long attributed to aggressive driving 
behaviours and increased likelihood of road accidents. Therefore, being able to accurately detect the affective 
states of the vehicle occupant will be critical for enhanced safety and comfort. 

In this paper, we present a methodology for the evaluation of the emotional states of vehicle drivers. The 
proposed approach performs an assessment of the emotional states by using combination of biologically 
inspired visual information processing and neural networks coupled with feedback mechanisms. The system 
consists of the following stages: (1) biologically inspired image pre-processing; (2) facial feature extraction; (3) 
multilayer perceptron for classification; and (4) feedback mechanism. The system has been preliminary 
validated by using data available from Japanese Female Facial Expression (JAFFE) database. Four affective 
states were identified and tested, which includes anger, sadness, and happiness. Subsequent tests have shown 
the successful detection rate of 91.3% with test images, and over 70% correct classification in images with 
Gaussian noises, respectively. 
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INTRODUCTION 

Recently there has been increasing attention towards automobile safety. According to the recent report by the 
UK government, road deaths have increased by 4% in the first quarter of 2014 compared to the previous year 
[1]. While the overall figure of fatalities has been under decline for the past decade, thanks to the improvement 
in medical treatment as well as the greater attention shown to the vulnerable road users such as the pedestrians 
and motor cyclists, the issue of road safety remains a key area for almost all nations in the world regardless of 
their wealth, with the fatality figure reaching over 1.2 million in the year 2010. Yet, only 28 nations in the 
entire world, which account for less than 450 million peoples of 7 billion world populations, are deemed to 
have sufficient legal measures to protect road users [2]. 
 
On the other hand, recent trends have shown that the developed nations are devoting a substantial amount of 
resources to improve road safety. In Britain, the government has spent £15.1 billion on the prevention of road 
accidents alone [3]. On a continental level, European Commission has launched a new EU Road Safety 
programme in 2010 as part of drive to cut the number of road fatalities by half between 2011-2020. All these 
findings show that the issue of road safety goes beyond the scope of industry.  
 
Improving road safety comes in many different forms. The EU Road Safety programme has been divided into 
seven sub-sections: improving the education and training of road user; better enforcement of road rules; 
providing safer transport infrastructures; developing safer vehicles; promoting the use of modern technology to 
increase road safety; improving emergency and post-injuries services; and increased effort to protect 
vulnerable road users. 
 
Within this paper, we have identified human emotions as one of the key influencers of driving performance.  
While most of existing Driver Monitoring System (DMS) focuses on drivers’ concentration or drowsiness, 
another aspect of driver’s status that deserves our attention is in emotion. Certain states of emotion, such as 
anger, and frustration can lead to aggressive and risky driving, which could result in accidents and fatalities. 
We believe that the accurate detection of emotional states from facial expressions is an important method to 
analyse and provide feedback to the vehicle driver’s concentration level. Through successful recognition of 
emotional status, such as distraction, anger or frustration, it will be possible to improve the driving conditions 
and thereby safety of the vulnerable road users such as the pedestrians and cyclists. 
 
We have applied image processing techniques and neural networks in the measurement of affective states based on 
still facial images in this study. The result of the finding can be used as a basis for future research in the application 
of affective computing in DMS. 
 
 There have been a number of studies which looked to present the feasibility of affective computing for 
improving road safety, and testing various methods of image processing in affective computing. It is notable that, 
despite numerous papers in the literature, there have been a minimal number of studies carried out on the use of 
image processing techniques coupled to neural networks in order to create an intelligent vision system which could 
evaluate human emotions. 
 
 
METHODS 

Biologically Inspired Orientation Filters 

We claim that biologically inspired visual information processing offers a robust method for mimicking the 
robustness and flexibility of the primary visual cortex. One major strand of knowledge behind our current 
understanding of the behaviour of the primary visual cortex, an important brain area for vision, comes from the 
set of experiments by Torsten Hubel and David H. Wiesel [4]. Their experiment consisted of inserting 
microscopic electrodes into the visual cortex of experimental animals. This was used to read the activity of 
single cells in the visual cortex while presenting various stimuli to the animal's eyes.  
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Figure 1. Hubel & Wiesel’s Experiment Setup (left), and the responses of the cat’s cortex when a rectangular slit of 
light of different orientations is shown (right) 

 

They discovered that a topographical mapping in the cortex, i.e. that nearby cells in the cortex represented 
nearby regions in the visual field, i.e. that the visual cortex represents a spatial map of the visual field. 
Individual cells in the cortex, they found responded to the presence of edges in their region of the visual field. 
Furthermore, cells were found which would fire only in the presence of a vertical edge at a particular location 
in the visual field, while other nearby cells responded to edges of other orientations in that same region of the 
visual field. These orientation-sensitive cells were called "simple cells", and were found all over the primary 
visual cortex [5][6] 

Based on Hubel and Wiesel’s experimentation, the biologically inspired visual information processing 
incorporates the orientation selectivity of simple cell neurons to extract the features of facial images. The 
bahviour of the simple cells suggest that these cells possessed a patterned receptive field, with excitatory and 
inhibitory regions so that the cell would activate only if it received input (due to light) in the excitatory portion 
of its receptive field in the absence of input from the inhibitory portion. This operation is comparable to the 
operation of edge detection in image processing, which would process an image by spatial convolution with an 
edge filter [7]. 

We have simulated these biological operations through the application of multiple orientation filters for the 
feature processing of the facial expression. Our aim was to develop a filter which could accurately recreate the 
characteristics of the simple cells in mammalian visual cortex. These filters consist of six filters, each with 
specific orientation selectivity, yielding outputs of six orientation images for each input image (test image and 
reference image). Each set of six orientation filters provided orientation-selectivity for 0, 30, 45, 60, 90, and 
135, degrees, and represents the receptive field properties of simple (linear) cells in V1. 
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would be described as shown in Table 1. In the context of affective computing, identification of emotional 
states using FACS code is known as EMFACS (Emotional facial Action Coding System), and they would 
concentrate on AU combinations related to emotional states. [15] 

Table 1. 
Basic Emotions and Corresponding Action Units 

Emotion Action Units (AU) 

Happiness 6 ( ‘cheek raiser’) + 12 (‘lip corner 
puller’) 

Sadness 1 (‘inner brow raiser’) + 4 (‘brow 
lowerer’) + 15 (‘Lip Corner 
Depressor’) 

Surprise 1 (‘inner brow raiser’) + 2 (‘outer brow 
raiser’) + 5B (‘Upper Lid Raiser*’) + 
26 (‘Jaw Drop’) 

Fear 1 (‘inner brow raiser’) + 2 (‘outer brow 
raiser’) + 4 (‘brow lowerer’) + 5 
(‘Upper Lid Raiser’) + 7 (‘Lid 
Tightener’)+ 20 (‘Lip Stretcher’) + 26 
(‘Jaw Drop’) 

Anger 4 (‘brow lowerer’) + 5 (‘Upper Lid 
Raiser’) + 7 (‘Lid Tightener’) + 23 
(‘Lip Tightener’) 

Disgust 9 (‘Nose Wrinkler’) + 15 (‘Lip Corner 
Depressor’) + 16 (‘Lower Lip 
Depressor’) 

 

Determining Regions of Interest (ROI) 

The actual process of calculating ROI has been done through detection of eyes and subsequent establishment 
of centre points between the eyes as the reference point through template based object recognition of eyes. 
From here, relevant AUs can be analysed for both the input image and neutral ‘reference’ image to which it 
would be compared against, as shown below. (figure!) 

 

Figure 3. (from left) Input image, orientation image, detection of central point between two eyes as the reference 
location of calculating the ROIs, and how the calculated ROIs appear in the original input image. 

 

Tests show that eye locations were detected successfully in both frontal and side facial image, demonstrating 
the effectiveness of combination of orientation selective feature extraction and feature based object 
recognition. This would, in turn, allow for measuring the level of driver attentiveness in road driving 
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In addition to cascaded neural networks of MLP explained previously, the feedback to ROI is applied by the 
trained upper and lower networks of MLP. In case of failed detection of safety monitoring output, the encoding 
of ROI values to neural input is subject to the feedback with the lower weight, for the pre-analysed ROI for the 
largest value of emotional status – which is the main contributor to the detection failure. The feedback rate to 
ROI applied to neural network is a fixed value and the selection of ROI is controlled by the ROI value and the 
input status of upper network when feedback is required, for this framework. The method of deep network is 
scope of investigation by evaluating the effectiveness and relevance to the performance of the target function. 

 

DATA SOURCES 

The accuracy of the emotion detection was measured by tests carried out on the JAFFE database, through 
processing with two feedforward neural networks (multi-layer perceptrons) and the feedback mechanism based 
on a deep learning concept. The biologically inspired visual information processing showed a significantly 
high accuracy to emotion recognition without the need for precise matching or complex computation. This was 
superseded by mimicking the primary function of the simple cell of visual cortex, which provided a degree of 
robustness by maintaining accuracy even in test images with Gaussian noises. 

 
RESULTS 

Based on the data set of 360 images, the overall rate of detection returned over 91.3% accuracy, as shown in 
the Table 2 below. The proposed method of combining biologically inspired visual information processing 
with multilayer perceptron also gave a satisfactory performance, maintaining a 70+% accuracy level up to 5% 
Gaussian noise level. Investigation of deep-learning inspired feedback mechanism also yielded an improved 
performance, resulting in 27.2% reduction in the occurrence of false-positives. 

Table 2. 
Result of Biologically Inspired Visual Information Processing & Multilayer Perceptron 

 

Compared to the comparative studies carried out in affective computing, combination of biologically inspired 
visual information processing and MLP have outperformed methods based on artificial neural networks (ANNs; 
84% accuracy) and combination of Sequential Floating Forward Search (SFFS), Fisher Projection (FP), and K-
nearest neighbour algorithm (KNN; 81% accuracy) [16]. 

In depth review of biologically inspired visual information processing approach revealed certain patterns of 
interest. It was demonstrated that four emotional states (happiness, anger, sadness, and neutral) can be 
successfully classified with a small number of variables. Yet there were some level of differences as to how 
accurately each emotion was classified by biologically inspired visual information processing approach. 

Angry emotional state was most likely to be detected with accuracy, with 100.0% successful detection rate, 
followed by happy emotional state with 90.0% classification accuracy. Sad emotional state had the most 
inaccurate incidents of classifications, which has also been documented in previous researches [17]. Reason for 
this difficulty could be attributed in parts to the comparative lack of facial expression in sad emotional state. 

Happy Angry Sadness Neutral
Happy 81 1 7 1 90.0 % (81 / 90)
Angry 0 90 0 0 100.0 % (90 / 90)
Sad 2 2 78 8 86.7 % (78 / 90)
Neutral 2 0 8 80 88.9 % (80 / 90)

Output Classification ResultInput
Class

Accurate 
Classification Rate
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Compared to anger, which involves composite movements of eyebrows, competitive movements of eyelids, 
and major movement in lip areas, sadness would be expressed by movement of eyebrows and small movement 
to the corner of the lips. Even in real-life situations, detecting expression of subtle sadness is a challenge, and 
it is possible to infer such factors have been represented in the test results as well. 

Further tests were carried out to determine the robustness of biologically inspired visual information 
processing approach, through introducing Gaussian noise to the images. This was done in order to examine its 
applicability in real life situations, where the image data is often corrupted. The results of classification with 
noisy test images showed a reduction of 16.01% in detection rate at 1% noise level, and maintained over 70% 
level of accuracy even at 10% noise level. 

Table 3. 
Detection rate (%) of biologically inspired visual information processing method with different level of Gaussian 

noise 

 

DISCUSSIONS AND LIMITATIONS 

In this study, our proposed model for identifying affective states required the presence of a neutral emotive 
state, which would be used as a reference. While it is theoretically possible to process an individual’s 
emotional status from a single image without any reference, in reality, there is a wide variability to the strength 
of human expression even within same emotive state. This variability is deemed dependent on the cultural, 
national, regional and gender difference of the subject [18]. This had also been reinforced during the analysis 
of datasets: that absolute values of expression within an individual cannot be used as a reliable measure. 
Further tests and statistical analysis could be carried out in the future as a means to develop an accurate and 
reliable indicator of emotive states based on input image alone. 

Another challenge we have recognised during the experiments was that there are at least two kinds to the 
expression of emotions – genuine and fake. A fake expression often differs from a genuine expression. For 
example, in case of happiness, only the zygomatic major muscle, which runs from the cheekbone to the corner 
of lips, moves in case of fake emotional status. On the other hand, a genuine expression of happiness would 
involve movement of orbicularis oculi and pars lateralis (eyebrows) as well as zygomatic major. In addition to 
limited facial muscle movements, fake emotive states are also known to contain a certain degree of asymmetry 
[19],[20].  

On the other hand, for certain emotional states in JAFFE dataset, there were very little expressions present. In 
comparison to the neutral image, even human vision had difficulty in determining the emotional state without 
the label. 

Further investigation of other facial affection database has shown that this issue isn’t unique to JAFFE 
database, as demonstrated in the figures below. 

Noise 
Level

SumROI(G) SumROI(M)

0.0% 78.7 91.7
1.0% 76.4 79.1
2.5% 73.1 75.7
5.0% 68.8 73.5

10.0% 64.1 65.9
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Figure 6.Limitations of dataset 
Top Row: Examples of ‘fake’ emotion – asymmetry is clearly visible in the fake facial expression 

Middle Row: Images displaying supposed expression of sadness (left) and neutral (right). 
Notice the lack of difference between this image and that of the neutral state (right). 

Black Box: Example of angry and neutral emotion from an alternative database. 
Without the labels, it would be challenging to determine that left image is demonstrating anger and the right one is of 

the neutral emotional state. 
 

CONCLUSIONS AND RELEVANCE TO THE SESSION SUBMITTED 

We believe this research has produced a foundation from which further studies could be carried out. For 
example, would be in refining the biologically visual information processing approach. We have recognised 
that there are at least two kinds to the expression of emotions – genuine and fake. Within the context of driver 
monitoring system, fake emotions are unnecessary and should be ignored. Further studies carried out with 
images of emotions in real-life situations could provide a better training for the monitoring system capable of 
demarcating two categories. 

Secondly, we have worked with the assumption of only neutral emotional states allowing for ideal driving 
situations. This hypothesis is under discussion within affective computing research, and will be given further 
updates in the coming time. 
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