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ABSTRACT

This paper represents an automated driving control algorithm in urban traffic situation. In order to achieve a
development of a highly automated driving control algorithm in urban environments, the research issues can
be classified into two things. One of the issues is to determine a safe driving envelope with the consideration
of probable risks and the other is to achieve robustness of control performance under disturbances and model
uncertainties. While human drivers maneuver a vehicle, they determine appropriate steering angle and
acceleration based on the predictable trajectories of the surrounding vehicles. Therefore, not only current
states of surrounding vehicles but also predictable behaviors of surrounding vehicles and potential obstacles
should be considered in designing an automated driving control algorithm. In order to analyze the probabilistic
behaviors of surrounding vehicles, we collected driving data on a real road. Then, in order to guarantee safety
to the possible change of traffic situation surrounding the subject vehicle during a finite time-horizon, the safe
driving envelope which describes the safe driving condition over a finite time horizon is defined in
consideration of probabilistic prediction of future positions of surrounding vehicles and potential obstacles.
Since an automated driving control algorithm is required to operate in a wide operating region and limit the set
of permissible states and inputs, a model predictive control (MPC) approach has been used widely in designing
an automated driving control algorithm. MPC approach uses a dynamic model of the vehicle to predict the
future states of the system and determines optimal control sequences at each time step to minimize a
performance index while satisfying constraints based on the predicted future states. Since the solving
nonlinear optimization problem has computational burden, we design an architecture which decides a desired
steering angle and longitudinal acceleration parallel to reduce the computational load. For the guarantee of the
robustness of control performance, a robust invariant set is used to ensure robust satisfaction of vehicle states
and constraints against disturbances and model uncertainties. The effectiveness of the proposed control
algorithm is evaluated by comparing between human driver data and proposed algorithm.

l. Introduction

Recently, the interest of automotive industry changes from the passive safety system to the active safety system and,
by extension, automated driving system due to advances in sensing technologies. For example, active safety
applications, such as vehicle stability control (VSC), adaptive cruise control (ACC), lane keeping assistance (LKA)
and lane change assistance (LCA) system, have been extensively researched [1]. In order to enhance safety and
achieve zero fatalities, many researches have been undertaken to integrate individual active safety systems for the
development of an automated driving system [2].

In developing an automated driving system which is required to operate in a wide operating region and limit the set
of permissible states and inputs, MPC approach has been used widely because of its capability to handle system
constraints in a systematic way [3], [4]. MPC approach uses a dynamic model of the plant to predict the future states
of the system and determines optimal control sequences at each time step to minimize a performance index while
satisfying constraints based on the predicted future states [5]. The first term of this optimal control sequences is
applied to the system. At next time step, new optimal control sequences is calculated over a shifted prediction
horizon. In [6], Falcone et al. present a MPC based active steering controller for tracking the desired trajectory as
close as possible while satisfying various constraints. In this research, it is assumed that the desired trajectory over a
finite horizon is known. Erlien et al. use a safe driving envelope which means a safe region of states in which the
system should be constrained [7]. In this research, the safe driving envelope consists of a stable handling envelope
to ensure vehicle stability and an environmental envelope to constrain the position states for the collision avoidance.
The environmental envelope is defined based on the current states of surrounding environment of the subject
vehicle. In order to compensate the effect on the control performance by model uncertainties and exogenous



disturbances, robust MPC approach which adds a linear feedback control input to the nominal control inputs based
on the analysis of robust invariant sets have been introduced and used to design an autonomous control algorithm
[8].

In order to develop a highly automated driving system, the research issues can be classified into two things. One of
the issues is to enhance safety under the possible change of the behaviors of neighboring vehicles in the future.
Human drivers maneuver the vehicle predicting possible surrounding vehicle’s trajectories. Therefore, not only
current states of surrounding environment of the subject vehicle but also predicted behaviors of surrounding
environment should be considered to control the vehicle autonomously [9]. Furthermore, since probable behaviors
of surrounding vehicles should be considered to prevent a potential collision accident in the future, a probabilistic
prediction is required [10]. The other issue in designing an automated driving system is to achieve robustness of
control performance under disturbances and model uncertainties due to inaccurate or time varying parameters [6].

In this research, we focus on designing an automated control algorithm which handles probable risky situations due
to the possible change of traffic situation surrounding the subject vehicle while satisfying a robust control
performance with respect to model parameter uncertainties and exogenous disturbances. In order to enhance safety
with respect to the potential behaviors of surrounding vehicles, a safe driving envelope which describes the safe
driving condition over a finite time horizon is defined in consideration of probabilistic prediction of future states of
surrounding environment. Then MPC problem is formulated to determine the desired steering angle and desired
longitudinal acceleration while maintaining the subject vehicle into the safe driving envelope. A tube-based robust
MPC approach is used to guarantee robust performance under model uncertainties and exogenous disturbances.

This paper is structured as follows: The overall architecture of the proposed automated driving control algorithm is
described in Section II. In Section 11, the lateral dynamics model for the determination of the desired steering angle
and longitudinal dynamics model for the determination of the desired longitudinal acceleration are derived briefly.
In Section IV, probabilistic prediction of surrounding vehicle behaviors and the description of the safe driving
envelope is described briefly. Then the controller is designed based on robust MPC approach in Section V. Section
VI shows the vehicle test results for the evaluation of the performance of the proposed algorithm. Then the
contribution of this research and introduction of future works are summarized in Section VII.

1. Overall Architecture

The overall architecture of the proposed automated driving control algorithm is shown in Fig. 1. In the integrated
perception layer, the information which is required to determine the desired driving mode and safe driving envelope
is refined using measurements from various sensors. In order to assess the driving situation precisely, states of the
subject vehicle and surrounding vehicles should be estimated from various measurements via exterior sensors, such
as vision and radar sensors. Then, the probable behaviors of the surrounding vehicles over a finite prediction
horizon are predicted using the information of current states of surrounding vehicles. Using the estimated states of
the subject vehicle and the ranges of probable behaviors of the surrounding vehicles over a finite prediction horizon,
a desired motion or desired driving mode of the subject vehicle is determined in the risk management layer. Since
the goal of the automated driving control algorithm proposed in this paper is to control the vehicle autonomously on
the road, the required driving mode is classified into lane keeping and lane change mode. The desired driving mode
is determined with the consideration of not only current states of traffic situation surrounding the subject vehicle but
also predictable situations among the potential changes of traffic situation surrounding the subject vehicle. Then the
safe driving envelope is determined based on the desired driving mode. Then the controller is designed to determine
the desired steering angle and the desired longitudinal acceleration separately while satisfying reliability. Using
robust MPC approach, the desired control inputs are determined to improve safety and ride comfort while satisfying
constraints of states and inputs.

1. Vehicle dynamics model

In order to obtain the desired control inputs separately based on MPC approach, the lateral dynamics model and
longitudinal dynamics model should be derived. In this research, the lateral dynamics model is designed by
combining the bicycle model and error dynamics with respect to a road. Furthermore, the longitudinal dynamics
model is designed by integrating the inter-vehicle dynamics and longitudinal actuator’s dynamics.
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Fig. 1 Overall architecture of the proposed automated driving control algorithm

A. Lateral dynamics model

A classic bicycle model is usually used to design a lateral control law [3]. However, since an automated driving
system should operate in a wide operating region, a classic bicycle model which assumes small slip angles of tires
could not be suitable as a predictive model. On the other hand, if we use a nonlinear tire model to build a dynamic
model, a nonlinear optimization problem should be solved at each time step. However, a computational burden to
solve a nonlinear MPC problem is a critical barrier for its implementation [6]. In order to cope with this drawback,

we apply a saturated linear tire model to reflect a tire saturation characteristic [11]. Then the bicycle model could be
modified as follows:
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where, k . and k_, are the cornering stiffness adjustment coefficients to reflect a tire saturation characteristic.

These adjustment coefficients are assumed to be known exactly in this paper.

In order to control the vehicle in the lateral direction, the modified bicycle model is combined with the error
dynamics which describes error with respect to a road. Therefore, the complete model used to design a MPC
controller is defined as shown in (3) and a diagram of the vehicle model is depicted in Fig. 2.

Xiat = Aa&xlai + B|a|u|a1 + Fp‘latpref (3)
a, a, 0 0 b
a, a, 0 0 b, 0

Aat = 0 l 0 0 ' Blal = 0 1 Fp,la& = _Vx (4)
v, 0 v, O 0 0

where, the state vector is x, = [ﬂ y e, ey]T , the control input is Uy, =& 4, €, is the orientation error of the

vehicle with respect to the road, e, denotes the lateral offset with respect to the center line of the lane, and g, is
the road curvature.
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Fig. 2 Diagram of lateral dynamics model

In order to solve a receding horizon optimization problem, the continuous differential equation (3) should be
discretized. (1) can be converted as follows:

X (K+2J8) = Ay g (K[ D)X (K[1) + By (K[UCK|) + F, 1y (K[1) oy (1) ()
Aat,d =eA‘MT5v Bla(‘d :(J.OTSeA‘SJdT) Bacs Fp,la(‘d =(_[0T5eﬁmrdr) Fp,la& (6)
where, T, is the sampling time. The system matrices of the lateral dynamics model, such as A, (k|t) + Bt (k|t) ,

and F, . 4 (k|t) , are obtained using the predicted sequences of the longitudinal velocity during a finite time-horizon.

B. Longitudinal dynamics model
In designing a longitudinal dynamics model of the subject vehicle, an actuator delay between the desired
longitudinal acceleration and the response of the actual longitudinal acceleration is considered as follows [11]:

1
X, des (7)

a, :ma
where, 7, is a time-constant chosen as 0.4 sec based on the analysis of the vehicle test platform.

In this research, two variables, such as distance error Ad and relative speed Av,, are used to define the inter-
vehicle dynamics.

Ad :Cxicx jes 1 Cx es = 7| 'Vx+stae
d Jd h saf (8)
Avx = Vx‘largel -V
where, C, and C, ., are the actual clearance and desired clearance between the subject vehicle and the target

is the

longitudinal velocity of the target vehicle. In this research, in order to embrace driving characteristics of all of the
drivers, the time gap, z,, is chosen as 1.36 sec which is the mean value of time gap for collected driving data in

steady-state following situation [1]. Furthermore the minimum safety longitudinal clearance, C

vehicle respectively, 7, indicates the time gap, C is the minimum safety longitudinal clearance and v

X, safe x,target

is chosen as 2

x,safe !
meters which is identical with the mean value of the clearance at the zero speed for all of the drivers [1]. The
method how to select the target vehicle among the surrounding vehicle would be described in Section IV.

The derivative of the equation (8) could be derived as shown in (9)

R, g
x = Gxtarget — Yx
Combining equation (7) and equation (9), the longitudinal dynamics model could be described as follows:
Xlong = Aong XIong + Blcngulung + Flongax‘target (10)
01 -7 0 0
Aong =|0 0 -1 'Blong = 0 ’Flong =1 (11)
0 0 _}éax %ax 0

where, the state vector is x,,, =[Ad Av, a, ]T and the control input is u,,, =a

X,des *
As similar as the lateral dynamics model, the discretization of the continuous state equation (10) is conducted
through the ZOH method as follows:
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V. Safe driving Envelope

Generally, human drivers monitor surrounding environment and predict the future states of surrounding
environment based on the current states of that. Then drivers estimate the threat level of possible actions and decide
the maneuver of the subject vehicle in consideration of the predicted states of surrounding vehicles during a finite
time-horizon. Therefore, in order to develop a highly automated driving system, a safe driving envelope which
indicates the drivable boundaries for safe driving over a finite prediction horizon should be determined with the
consideration of not only current states of traffic situation surrounding the subject vehicle but also probable future
states of that simultaneously [9]. Considering probable future states of surrounding vehicles, it could be expected
that the automated driving control algorithm could handle probable risky situation during a finite time-horizon and
enhance safety. Furthermore, if we define the safe driving envelope based on the probabilistic prediction, it is
expected that an automated driving control algorithm which reflects human driver’s driving characteristics with an
acceptable ride comfort could be developed. Firstly, the method of the probabilistic prediction method is presented
in Section I11-A. Then the determination of the desired driving mode and the safe driving envelope is represented in
Section 111-B.

A. Probabilistic prediction of surrounding vehicle’s behavior

One of common approach to predict the future states of traffic situation surrounding the subject vehicles is a
deterministic prediction which assumes that the surrounding vehicles maintain its current movement during a finite
time horizon. Since this approach ignores the probability of all possible movements of surrounding vehicles, this
could cause incorrect interpretation of the current driving situation.

In order to compensate the shortcomings of the deterministic prediction of the behaviors of surrounding vehicles,
the possible behaviors of surrounding vehicles are predicted and the risky behaviors among the possible behaviors
of other vehicles surrounding the subject vehicle are considered in determining the safe driving envelope.

For the prediction of the reasonable and realistic behaviors of surrounding vehicles, the interaction between vehicles
and the restriction on surrounding vehicle’s maneuver due to the road geometry should be considered [12].
Moreover, it is assumed that drivers of the surrounding vehicles obey general traffic rules [13]. It means that the
surrounding vehicle’s behavior is assumed to keep the lane or change one lane at a time, not two or more lanes at a
time. If one of surrounding vehicles changes the lane, then that vehicle is assumed to keep the relevant lane in the
far-off future. Furthermore the violation of the centerline of surrounding vehicles is prohibited.

In predicting reasonable ranges of the future states of surrounding vehicles, driving data are collected on test track
and real road to analyze the probabilistic movement characteristics of the vehicle [14]. For the implementation of
these assumptions, a path-following model is designed while interacting with a vehicle state predictor during one
cycle of the prediction process. In the vehicle state predictor, the vehicle’s probable position and its error covariance
over a finite time horizon are predicted by Extended Kalman Filter using the desired yaw rate obtained by the path-
following model as the virtual measurement.

Fig. 3 depicts the overall architecture of probabilistic prediction of surrounding vehicles. Using measurements from
the various sensors, such as vehicle sensor, radar and vision sensor, the range of the predicted states with

corresponding uncertainty is determined as shown in Fig. 3. p, is the longitudinal position of the vehicle, p, is the

lateral position of the vehicle, N denotes the prediction horizon, and subscript ‘j" means the j-th objects. In

predicting the position of the surrounding vehicle, it is assumed that the size of the object is equivalent to the subject
vehicle. The ellipse in Fig. 3 indicates the predicted probable range of the center gravity of the vehicle at the
prediction time. A detailed description on the computational procedures to predict the probabilistic range of future
states during a finite time horizon is described concretely in [10], [15].
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Fig. 3 Overall architecture of probabilistic prediction of surrounding vehicle's behavior

B. Driving mode and Environmental envelope decision

For the determination of the environmental envelope to improve safety, first of all, a potential risky situation should
be considered. The risky situation among the probable behaviors of the surrounding vehicles could be classified
roughly into three types. Firstly, if the preceding vehicle in the originating lane of the subject vehicle decelerates
abruptly, then the potential risk of collision between the preceding vehicle and the subject vehicle would increase.
Secondly, if the approaching vehicle in the adjacent lane accelerates during a lane change maneuver of the subject
vehicle, then the collision between the approaching vehicle in the adjacent lane and the subject vehicle could be
expected. Thirdly, there could be a potential risk of collision due to a sudden cut-in vehicle. Therefore, for the
enhancement of safety, not only current states of surrounding environment of the subject vehicle but also these risky
behaviors of the surrounding vehicles over a finite prediction horizon should be considered in determining the
environmental envelope to improve safety.

Since the environmental envelope should be defined based on the desired motion, we should determine the desired
motion or desired driving mode of the subject vehicle before the decision of the environmental envelope. The
required driving mode could be approximately classified into lane keeping and lane change mode on an auto road. If
there is no preceding vehicle in the originating lane which has a potential risk of collision during a finite prediction
horizon, the desired driving mode could be determined as a lane keeping mode. In this case, the environmental
envelope is determined to keep the originating lane while maintaining safety with respect to the surrounding vehicle.
If the longitudinal or lateral clearances expected at the prediction time step k between the subject vehicle and
surrounding vehicle are larger than predefined threshold value, then the collision risk is low and the environmental

envelope for e, is determined to prevent a lane departure. On the other hand, if the longitudinal or lateral

clearances at the prediction time step k are expected to be smaller than thresholds, then the collision risk is high.
Therefore the environmental envelope for e, is determined to keep the originating lane while evading the

approaching vehicle in the adjacent lane. The decision process of the environmental envelope for a lane keeping
mode and the environmental envelope to keep the originating lane while maintaining safety with respect to the
surrounding vehicles are described in Fig. 4-(a). In Fig. 4-(a), the pink rectangle indicates the region of the possible
behavior of surrounding vehicles and the violet rectangle indicates the region of the possible behavior of
surrounding vehicles with the consideration of sensor uncertainty.

On the other hand, there could be a preceding vehicle in the originating lane which has a collision risk during a
finite prediction horizon or one of the surrounding vehicles in the adjacent lane is expected to change the lane into
the originating lane of the subject vehicle during the prediction time horizon. In this case, the lane change of the
subject vehicle from the originating lane to the adjacent lane might be required. Then the feasibility of the lane
change and safety after the lane change should be considered. If there is no vehicle is in the adjacent lane when the
lane change of the subject vehicle is required, then the lane change could be permitted. Otherwise, we should
investigate the minimum longitudinal clearance between the subject vehicle and the vehicle in the adjacent lane to
which the subject vehicle change the lane from the originating lane over a finite prediction horizon. If the minimum
longitudinal clearance between the subject vehicle and the vehicle in the adjacent lane is larger than the minimum
safety longitudinal clearance over a finite prediction horizon, then the collision between the subject vehicle and the
vehicle in the adjacent lane would be avoided over a finite prediction horizon. Therefore, the lane change of the
subject vehicle could be permitted and the desired driving mode could be determined as a lane change mode. On the



contrary, if the minimum longitudinal clearance between the subject vehicle and the vehicle in the adjacent lane is
smaller than the minimum safety longitudinal clearance over a finite prediction horizon, there could be a collision
between the subject vehicle and the vehicle in the adjacent lane during a finite time-horizon and the lane change of
the subject vehicle should not be permitted. The decision process of the environmental envelope for a lane change
mode is described in Fig. 4-(b).
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Fig. 4 Decision process of the environmental envelope
Consequently, the condition of limitation of the lateral deviation, e, to satisfying the environmental envelope can
be written as follows:
Hen, - X(K) < Gy uppersoung (), k=1, N
Ganvtomer poung (K) < Hepy - X(K),  k=1...,N,
where,
H,,=[0 0 0 1]
Before the determination of the environmental envelope to guarantee the longitudinal safety, we need to define the
state of the target vehicle for the control of the longitudinal acceleration. In the case of a lane keeping mode, if the
width of the environmental envelope for e, over a finite prediction horizon is large enough, it means that possible

(14)

behaviors of surrounding vehicles in the adjacent lane are predicted to keep their lane. Then the preceding vehicle in
the originating lane is chosen as the target vehicle for the control of the longitudinal acceleration. If there is no
preceding vehicle in the originating lane or the clearance between the subject vehicle and the preceding vehicle is
too far, then the virtual vehicle to follow the desired velocity is chosen as the target vehicle for the control of the
longitudinal acceleration.

On the other hand, one of adjacent vehicles could be expected to approach to the originating lane of the subject
vehicle or change the lane into the originating lane of the subject vehicle. In this case, the width of the
environmental envelope for e, could be smaller than minimum safety width. It means that the subject vehicle could

not keep the lane only with the steering maneuver. Generally, when drivers recognize that the neighboring vehicle
in the adjacent lane is entering into the lane of the subject vehicle, drivers generally tend to release the throttle pedal
or apply the brakes to decelerate [16]. According to the previous research [16], the target vehicle is generated by
combining the preceding vehicle in the originating lane and the meaningful vehicle in the adjacent lane. Based on
this research, the clearance and relative speed between the subject vehicle and the meaningful vehicle in the
adjacent lane are integrated with those between the subject vehicle and the preceding vehicle in the originating lane
for the generation of the target vehicle’s information. For instance, if the width of the environmental envelope for



e, at the prediction time step j is expected to be smaller than minimum safety width as shown in Fig. 8, then the

weighting factor, @, , to determine the target vehicle’s state for the longitudinal acceleration control is determined
as shown in (15).
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Fig. 5 Determination of the target vehicle for the longitudinal acceleration control in a lane keeping
mode
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where, TTC means the time to collision and x indicates the non-dimensional warning index [1]. n in (15)
indicates the prediction time step at which the width of the environmental envelope for e, is smaller than

minimum safety width.

Consequently, the integration between the preceding vehicle in the originating lane and meaningful vehicle in the
adjacent lane is defined as shown in (16).
C.(® C,meaninga (1) Cinane (1)
Vx‘target(t) =0 - Vx‘meaningful(j‘t) +(17wu<)' Vx,lnlane(t) (16)
@, arger (1) 8, meaningrr (1[1) 8, piane (1)
In the case of a lane change mode, the target vehicle’s states are determined by the integration between the
preceding vehicle and the surrounding vehicle in the adjacent lane of the lane change direction. For instance, if the
lane change direction is left, then the target vehicle’s states are determined by the integration between the preceding
vehicle in the originating lane and the surrounding vehicle in the left lane. The weighting factor for the integration
in a lane change mode, @, , is defined as shown in (17). Then the integration for the determination of the target
vehicle’s states to control a longitudinal acceleration during a lane change mode is defined as shown in (18).
e

Qe =o3w

road
Cx (t) Cx,sidelane,LC Cx‘inlane (t)
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where, the subscript ‘side-lane” means the vehicle in the adjacent lane to which the subject vehicle changes the lane
from the originating lane and W, _, is the road width which could be known from the vision sensor.
After the determination of the state of the target vehicle for the control of the longitudinal acceleration, then we
could define the environmental envelope to guarantee the longitudinal safety. In order to avoid the collision over a
finite prediction horizon, the clearance between the subject vehicle and the target vehicle should be larger than
minimum safety longitudinal clearance, C, . , as shown in (19).

C(KD)>C, 0, k=1..,N (19)

To satisfy the condition described in (19), the constraint of the distance error between the actual clearance and
desired clearance could be defined as follows:
Ad(K|t) 2 C, e — Caee(K[) =7, -v,, k=L1...,N, (20)

Moreover, for the improvement of the longitudinal safety, the relative speed between the subject vehicle and the

(0<aoy <1) (17

X, safe



target vehicle should be larger than the threshold of the relative speed, Av, .., as shown in (21).

AV, (K[t) > Av k=1...,N (21)
Consequently, the environmental envelope to guarantee the longitudinal safety could be represented as the linear
inequality as shown in (22).

100 -7, -V,
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V. Robust MPC based Controller design

As mentioned in Section I, distributed control architecture which is composed of the lateral control law based on
robust MPC approach and the longitudinal control law based on robust MPC approach is adopted. In this research,
the sampling time, T, is chosen as 0.1 second and the length of the prediction horizon, N, is chosen as 20. These

receding horizon optimization problems are solved at each time step and the first terms of the optimal control
sequences are applied to the system. Then receding horizon optimization problems for a shifted prediction horizon
are solved to obtain new optimal control inputs at next time step. To solve MPC problem in MATLAB, CVXGEN
which is designed to be utilizable in MATLAB is used as solver [17]. The MPC problem is defined using CVXGEN
syntax, and the CVXGEN returns convex optimization solver for the defined optimization solver for the defined
optimization problem.

A. Background on Robust Model Predictive Control

In this section, we present the background on robust MPC which is used to decide the desired control inputs for the
robust control performance. The control problem based on robust MPC is classified into a feedforward control input
for the nominal system and a linear feedback control input to reduce the error between the actual state and the
nominal state predicted by model of the plant.
Then the control law can be written as follows:

u(k) = (k) + K (x(k) - x(k)) =T (k) + Ke (23)

where, K e R™" is the linear state feedback gain and e := (x(k) — X (k)) is the error between the actual state and the
predicted nominal state. In this paper, the control law of the state feedback gain is LQR.

B. Desired Steering Angle Decision

As mentioned above, in order to obtain the desired steering angle to keep the vehicle in the safe driving envelope
while satisfying the robustness of the control performance under model uncertainties and exogenous disturbances, a
feedforward steering input for the nominal lateral dynamics model and a feedback steering input for the
compensation of the error between the actual states and the predicted nominal states should be integrated. For the
determination of a feedforward steering input, we design the cost function as follows:

Np—l Np—z T Np—l
3= Ko (K[ W R (/[ + R sy D [ (k +10) = G ()], + (H K (N[0 = Vi ) W, (H R (N[0 = Yo )+ Ri X [T (D)

k=1 k=0 k=0
where, (24)

[0 01 O}
H=
0001
where, W

is predefined weighting matrix, which penalize the differences between states and zero, WNP is

cost,lat
predefined weighting matrix to reduce the differences between the final position of the vehicle over a finite
prediction horizon and the desired position, R, and R, ,, are predefined weighting matrices for the reduction of

lat
magnitudes of steering angle control sequences and the rate of change in steering angle control sequences
respectively. These matrices are positive-definite symmetric. WNp is defined as shown in (25).
Yies =[0 Wigag ]T . Left Lane Change

Yes =[0 W, ] : Right Lane Change

Since the actuator has a limitation to operate, the control input and there derivatives need to be constrained. These
constraints are given as follows:

(25)
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(26)
U (K +18) = U (K[D)], < Spais k=0..N,-2

where, Uy, .. is the maximum magnitude of the steering control input and S, is the maximum magnitude of the

lat
rate of change of the steering control input.
In order to ensure the stability of the vehicle, the side slip angle and lateral acceleration should be restricted for
the stability of the vehicle. Therefore the condition for the stability of the vehicle can be written as follows:
|BK[D)|< B =tan*(0.0249), k=1...,N (27)

P

(28)

P

where, x denotes tire-road friction coefficient and A . is the threshold of the lateral acceleration, which is

chosen as 8m/s?.
The constraints for the stability of the vehicle which are defined in (27) and (28) can be represented as the linear
inequality as shown in (29).

k=1...N_ where, Hveh:[l 00 0}, Gvehw:[ﬁmﬂ (29)

Hveh *Xiat (k‘t)‘ < Gveh‘max ’

0100 Voo

Then MPC problem for the determination of the feedforward steering input could be defined by combining (5),
(14), (24), (26) and (29) as follows:
min (24)
st. (5),(14),(26),(29)

In order to design the robust MPC while reducing complexity, the effect of model parameter uncertainties and
exogenous disturbances on the linear dynamics model in (5) is represented as an additive equivalent disturbance.
Then the lateral dynamics model including the additional disturbance term is written as follows:

Xt (K +1) = Ay X(K) + By qu(k) + F tata Pret (K) + Wiy q (31)

where, w, . €R* is the additive equivalent disturbance on the lateral dynamics model. The equivalent

(30)

disturbance w,,, is unknown but assumed to be bounded as shown in (32).

Wlal‘eq € Wlal !

Wlat‘eq

< [O.OS,O.OS,O.S-L,OJ} (32)
180

C. Desired Longitudinal Acceleration Decision

Similar to the lateral control law, the longitudinal control law should be designed to obtain the desired
longitudinal acceleration to keep the vehicle in the safe driving envelope while ensuring the robust control
performance. Therefore the desired longitudinal acceleration is determined by combining a feedforward input for
the nominal longitudinal dynamics model and a feedback input to attenuate the effect on the system by model
parameter uncertainties or external disturbances.

In order to determine the feedforward control input for the longitudinal control of the vehicle, we design the cost
function as shown in (33).

Ny Np-1
Jlung = z Xlong (k‘t)TWcosi,long YIung (k‘t) + RIong z
k=1 k=0

Ny-2

+ RIong JAu Z

k=0

Ui (K[1)], +

UIcng (O‘ t) - ax

Uiong (K +1J1) = Ty (K[1)], (33)
where, W,

cost,long

is predefined weighting matrix to reduce the magnitudes of longitudinal acceleration sequences and R

is predefined weighting matrix for the minimization of the differences between states and zero, R

long
long,Au IS
predefined weighting matrix to prevent abrupt change of longitudinal acceleration in sequences. These weighting
matrices are positive-definite symmetric.

The constraints on the range of the longitudinal acceleration control input and change rate during a finite
prediction horizon are written as follows:
Trong.min < Tiong (K[1) < Tigpg s~ k=0...N 1

- - - (34)
Uiong (K +1) = Ty (k)| < k=0...N,-2

long *

and ulong.max

where, U,

long,min

are the minimum and maximum magnitude of the longitudinal acceleration control



input respectively. S, is the maximum magnitude of the rate of change of the longitudinal acceleration control

long
input.

Then MPC problem for the determination of the feedforward longitudinal acceleration input could be formulated
by combining (10), (22), (33) and (34) as follows:

min (33)
st. (10),(22), (34)

In order to determine a feedback control input for the longitudinal control of the vehicle, an additive equivalent
disturbance is included in (10) to represent the effect on the system by model parameter uncertainties or external
disturbances.

Xiong (K 1) = A 4 Xiong (K) + Bion 4Uiong (K) + Fiang 18 rge (K) + Wi g (36)

(35)

where, w, e R* is the additive equivalent disturbance on the longitudinal dynamics model. Similar to the

longeq
equivalent disturbance on the lateral dynamics model, it is assumed that the equivalent disturbance on the
longitudinal dynamics model, w, is unknown but bounded as shown in (37).

ong eq !

eW,

long *

<[0.05,0.1,0.05] @37

Wlong eq VVlong eq

VI. Vehicle test results

The proposed automated driving control algorithm is evaluated through computer vehicle tests. In order to evaluate
the proposed algorithm on a real test vehicle, Hyundai-Kia Motors K7 is used as a test vehicle platform. Figure 6
shows the test vehicle configuration. In order to measure DLC, heading angle and road curvature, a Mobileye
camera system is equipped on the test vehicle. The proposed algorithm has been implemented on “dSPACE
Autobox”, which is used for the real-time application and equipped with a DS1005 processor board. Delphi radars
are equipped on the test vehicle to perceive surrounding environments. The hardware components mentioned above
communicate through a CAN bus.

Vision Sensor .
( Mobileye : C2-170 ) Rapid Control

y Prototype Tool
‘ _ : Autobox

Rear-side Radar
[ Delphi : 24GHz )

Base Platform
: K7 (Hyundai-Kia Motors)

Fig. 6 Test vehicle configuration
The test track is a straight road. The road-tire friction coefficient is assumed to be 0.85, since the road of the test
track is a dry asphalt road. Two cases of experiments have been conducted. In order to evaluate the performance of
the proposed algorithm under lane change situation, the scenario of experiment is designed to evaluate the
performance of the proposed algorithm under overtaking situation as shown in Figure 7.

Front-side Vehicle #2
Vx,front-side#z =40km/h

pmmmmeo OTD--

7 “ N\
D---- Tr-- -
Subject Vehicle Front Vehicle #1
Vx,subject: 50km/h Vironts = 40km/h

Fig. 7 Experiment scenario for overtaking



The simulation results are presented in Figure 8. As shown in Figure 8, it can be known that the controller shows
quite similar performances to the human driver while changing lane. Based on these results, it has been shown that
the proposed algorithm could reflect human driver’s driving characteristics. It means that the proposed algorithm
could provide acceptable ride comfort in general driving situations. Since lateral offset is measured by camera
sensors, lateral offset is plotted as discontinuous as shown in Figure 8-(a). Figure 8-(b) and (c) depict steering angle
and longitudinal acceleration comparing results between the human driver and the controller. Lateral acceleration

has reasonable magnitude as shown in Figure 8-(d).
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(b) Comparison of the steering angle between the driver and the controller
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Fig. 8 Comparison between the driver and the proposed algorithm under overtaking situation

VII. Conclusion

A robust MPC based vehicle speed and steering control algorithm has been developed to enhance safety and
ensure constraint satisfaction under model uncertainties and external disturbances. In order to cope with potential
risky situation, not only current states of surrounding environment but also potential risky behaviors of that during a
finite time horizon are considered simultaneously in determining the desired driving mode and the safe driving
envelope. Then distributed control architecture based on robust MPC approach is used to determine the desired
steering angle and desired longitudinal acceleration separately while satisfying reliability and reducing a
computational burden.

In order to verify the effectiveness of the proposed control algorithm, computer simulations have been conducted.
The simulation results show that the proposed control algorithm enhances safety with respect to the potential risk
and provides permissible ride comfort. Furthermore it has been shown that robust vehicle control performance can
be obtained in the presence of additional disturbances by using the proposed algorithm.

In the future, we should verify the performance of the proposed algorithm via vehicle tests.
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