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ABSTRACT 
This paper represents an automated driving control algorithm in urban traffic situation. In order to achieve a 
development of a highly automated driving control algorithm in urban environments, the research issues can 
be classified into two things. One of the issues is to determine a safe driving envelope with the consideration 
of probable risks and the other is to achieve robustness of control performance under disturbances and model 
uncertainties. While human drivers maneuver a vehicle, they determine appropriate steering angle and 
acceleration based on the predictable trajectories of the surrounding vehicles. Therefore, not only current 
states of surrounding vehicles but also predictable behaviors of surrounding vehicles and potential obstacles 
should be considered in designing an automated driving control algorithm. In order to analyze the probabilistic 
behaviors of surrounding vehicles, we collected driving data on a real road. Then, in order to guarantee safety 
to the possible change of traffic situation surrounding the subject vehicle during a finite time-horizon, the safe 
driving envelope which describes the safe driving condition over a finite time horizon is defined in 
consideration of probabilistic prediction of future positions of surrounding vehicles and potential obstacles. 
Since an automated driving control algorithm is required to operate in a wide operating region and limit the set 
of permissible states and inputs, a model predictive control (MPC) approach has been used widely in designing 
an automated driving control algorithm. MPC approach uses a dynamic model of the vehicle to predict the 
future states of the system and determines optimal control sequences at each time step to minimize a 
performance index while satisfying constraints based on the predicted future states. Since the solving 
nonlinear optimization problem has computational burden, we design an architecture which decides a desired 
steering angle and longitudinal acceleration parallel to reduce the computational load. For the guarantee of the 
robustness of control performance, a robust invariant set is used to ensure robust satisfaction of vehicle states 
and constraints against disturbances and model uncertainties. The effectiveness of the proposed control 
algorithm is evaluated by comparing between human driver data and proposed algorithm. 

I. Introduction 

Recently, the interest of automotive industry changes from the passive safety system to the active safety system and, 
by extension, automated driving system due to advances in sensing technologies. For example, active safety 
applications, such as vehicle stability control (VSC), adaptive cruise control (ACC), lane keeping assistance (LKA) 
and lane change assistance (LCA) system, have been extensively researched [1]. In order to enhance safety and 
achieve zero fatalities, many researches have been undertaken to integrate individual active safety systems for the 
development of an automated driving system [2]. 
In developing an automated driving system which is required to operate in a wide operating region and limit the set 
of permissible states and inputs, MPC approach has been used widely because of its capability to handle system 
constraints in a systematic way [3], [4]. MPC approach uses a dynamic model of the plant to predict the future states 
of the system and determines optimal control sequences at each time step to minimize a performance index while 
satisfying constraints based on the predicted future states [5]. The first term of this optimal control sequences is 
applied to the system. At next time step, new optimal control sequences is calculated over a shifted prediction 
horizon. In [6], Falcone et al. present a MPC based active steering controller for tracking the desired trajectory as 
close as possible while satisfying various constraints. In this research, it is assumed that the desired trajectory over a 
finite horizon is known. Erlien et al. use a safe driving envelope which means a safe region of states in which the 
system should be constrained [7]. In this research, the safe driving envelope consists of a stable handling envelope 
to ensure vehicle stability and an environmental envelope to constrain the position states for the collision avoidance. 
The environmental envelope is defined based on the current states of surrounding environment of the subject 
vehicle. In order to compensate the effect on the control performance by model uncertainties and exogenous 



disturbances, robust MPC approach which adds a linear feedback control input to the nominal control inputs based 
on the analysis of robust invariant sets have been introduced and used to design an autonomous control algorithm 
[8]. 
In order to develop a highly automated driving system, the research issues can be classified into two things. One of 
the issues is to enhance safety under the possible change of the behaviors of neighboring vehicles in the future. 
Human drivers maneuver the vehicle predicting possible surrounding vehicle’s trajectories. Therefore, not only 
current states of surrounding environment of the subject vehicle but also predicted behaviors of surrounding 
environment should be considered to control the vehicle autonomously [9]. Furthermore, since probable behaviors 
of surrounding vehicles should be considered to prevent a potential collision accident in the future, a probabilistic 
prediction is required [10]. The other issue in designing an automated driving system is to achieve robustness of 
control performance under disturbances and model uncertainties due to inaccurate or time varying parameters [6]. 
In this research, we focus on designing an automated control algorithm which handles probable risky situations due 
to the possible change of traffic situation surrounding the subject vehicle while satisfying a robust control 
performance with respect to model parameter uncertainties and exogenous disturbances. In order to enhance safety 
with respect to the potential behaviors of surrounding vehicles, a safe driving envelope which describes the safe 
driving condition over a finite time horizon is defined in consideration of probabilistic prediction of future states of 
surrounding environment. Then MPC problem is formulated to determine the desired steering angle and desired 
longitudinal acceleration while maintaining the subject vehicle into the safe driving envelope. A tube-based robust 
MPC approach is used to guarantee robust performance under model uncertainties and exogenous disturbances. 
This paper is structured as follows: The overall architecture of the proposed automated driving control algorithm is 
described in Section II. In Section III, the lateral dynamics model for the determination of the desired steering angle 
and longitudinal dynamics model for the determination of the desired longitudinal acceleration are derived briefly. 
In Section IV, probabilistic prediction of surrounding vehicle behaviors and the description of the safe driving 
envelope is described briefly. Then the controller is designed based on robust MPC approach in Section V. Section 
VI shows the vehicle test results for the evaluation of the performance of the proposed algorithm. Then the 
contribution of this research and introduction of future works are summarized in Section VII.  

II. Overall Architecture 

The overall architecture of the proposed automated driving control algorithm is shown in Fig. 1. In the integrated 
perception layer, the information which is required to determine the desired driving mode and safe driving envelope 
is refined using measurements from various sensors. In order to assess the driving situation precisely, states of the 
subject vehicle and surrounding vehicles should be estimated from various measurements via exterior sensors, such 
as vision and radar sensors. Then, the probable behaviors of the surrounding vehicles over a finite prediction 
horizon are predicted using the information of current states of surrounding vehicles. Using the estimated states of 
the subject vehicle and the ranges of probable behaviors of the surrounding vehicles over a finite prediction horizon, 
a desired motion or desired driving mode of the subject vehicle is determined in the risk management layer. Since 
the goal of the automated driving control algorithm proposed in this paper is to control the vehicle autonomously on 
the road, the required driving mode is classified into lane keeping and lane change mode. The desired driving mode 
is determined with the consideration of not only current states of traffic situation surrounding the subject vehicle but 
also predictable situations among the potential changes of traffic situation surrounding the subject vehicle. Then the 
safe driving envelope is determined based on the desired driving mode. Then the controller is designed to determine 
the desired steering angle and the desired longitudinal acceleration separately while satisfying reliability. Using 
robust MPC approach, the desired control inputs are determined to improve safety and ride comfort while satisfying 
constraints of states and inputs. 

III. Vehicle dynamics model 

In order to obtain the desired control inputs separately based on MPC approach, the lateral dynamics model and 
longitudinal dynamics model should be derived. In this research, the lateral dynamics model is designed by 
combining the bicycle model and error dynamics with respect to a road. Furthermore, the longitudinal dynamics 
model is designed by integrating the inter-vehicle dynamics and longitudinal actuator’s dynamics. 
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Fig. 2 Diagram of lateral dynamics model 

 
In order to solve a receding horizon optimization problem, the continuous differential equation (3) should be 

discretized. (1) can be converted as follows: 

, , , ,( 1 ) ( ) ( ) ( ) ( ) ( ) ( )lat lat d lat lat d lat d refx k t A k t x k t B k t u k t F k t t               (5) 
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where, sT  is the sampling time. The system matrices of the lateral dynamics model, such as , ( )lat dA k t , , ( )lat dB k t , 

and , , ( )lat dF k t , are obtained using the predicted sequences of the longitudinal velocity during a finite time-horizon. 

B. Longitudinal dynamics model   

In designing a longitudinal dynamics model of the subject vehicle, an actuator delay between the desired 
longitudinal acceleration and the response of the actual longitudinal acceleration is considered as follows [11]: 

,

1

1
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                                                                      (7) 

where, ax  is a time-constant chosen as 0.4 sec based on the analysis of the vehicle test platform. 

In this research, two variables, such as distance error d  and relative speed  xv , are used to define the inter-

vehicle dynamics. 
, , ,
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where, xC  and ,x desC  are the actual clearance and desired clearance between the subject vehicle and the target 

vehicle respectively, h  indicates the time gap, ,x safeC  is the minimum safety longitudinal clearance and ,targetxv is the 

longitudinal velocity of the target vehicle. In this research, in order to embrace driving characteristics of all of the 
drivers, the time gap, h , is chosen as 1.36 sec which is the mean value of time gap for collected driving data in 

steady-state following situation [1]. Furthermore the minimum safety longitudinal clearance, ,x safeC , is chosen as 2 

meters which is identical with the mean value of the clearance at the zero speed for all of the drivers [1]. The 
method how to select the target vehicle among the surrounding vehicle would be described in Section IV. 

The derivative of the equation (8) could be derived as shown in (9) 
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Combining equation (7) and equation (9), the longitudinal dynamics model could be described as follows: 
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where, the state vector is     T

long x xx d v a  and the control input is ,long x desu a . 

As similar as the lateral dynamics model, the discretization of the continuous state equation (10) is conducted 
through the ZOH method as follows: 
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IV. Safe driving Envelope 

Generally, human drivers monitor surrounding environment and predict the future states of surrounding 
environment based on the current states of that. Then drivers estimate the threat level of possible actions and decide 
the maneuver of the subject vehicle in consideration of the predicted states of surrounding vehicles during a finite 
time-horizon. Therefore, in order to develop a highly automated driving system, a safe driving envelope which 
indicates the drivable boundaries for safe driving over a finite prediction horizon should be determined with the 
consideration of not only current states of traffic situation surrounding the subject vehicle but also probable future 
states of that simultaneously [9]. Considering probable future states of surrounding vehicles, it could be expected 
that the automated driving control algorithm could handle probable risky situation during a finite time-horizon and 
enhance safety. Furthermore, if we define the safe driving envelope based on the probabilistic prediction, it is 
expected that an automated driving control algorithm which reflects human driver’s driving characteristics with an 
acceptable ride comfort could be developed. Firstly, the method of the probabilistic prediction method is presented 
in Section III-A. Then the determination of the desired driving mode and the safe driving envelope is represented in 
Section III-B.  

A. Probabilistic prediction of surrounding vehicle’s behavior 

One of common approach to predict the future states of traffic situation surrounding the subject vehicles is a 
deterministic prediction which assumes that the surrounding vehicles maintain its current movement during a finite 
time horizon. Since this approach ignores the probability of all possible movements of surrounding vehicles, this 
could cause incorrect interpretation of the current driving situation. 
In order to compensate the shortcomings of the deterministic prediction of the behaviors of surrounding vehicles, 
the possible behaviors of surrounding vehicles are predicted and the risky behaviors among the possible behaviors 
of other vehicles surrounding the subject vehicle are considered in determining the safe driving envelope. 
For the prediction of the reasonable and realistic behaviors of surrounding vehicles, the interaction between vehicles 
and the restriction on surrounding vehicle’s maneuver due to the road geometry should be considered [12]. 
Moreover, it is assumed that drivers of the surrounding vehicles obey general traffic rules [13]. It means that the 
surrounding vehicle’s behavior is assumed to keep the lane or change one lane at a time, not two or more lanes at a 
time. If one of surrounding vehicles changes the lane, then that vehicle is assumed to keep the relevant lane in the 
far-off future. Furthermore the violation of the centerline of surrounding vehicles is prohibited. 
In predicting reasonable ranges of the future states of surrounding vehicles, driving data are collected on test track 
and real road to analyze the probabilistic movement characteristics of the vehicle [14]. For the implementation of 
these assumptions, a path-following model is designed while interacting with a vehicle state predictor during one 
cycle of the prediction process. In the vehicle state predictor, the vehicle’s probable position and its error covariance 
over a finite time horizon are predicted by Extended Kalman Filter using the desired yaw rate obtained by the path-
following model as the virtual measurement. 
Fig. 3 depicts the overall architecture of probabilistic prediction of surrounding vehicles. Using measurements from 
the various sensors, such as vehicle sensor, radar and vision sensor, the range of the predicted states with 
corresponding uncertainty is determined as shown in Fig. 3. xp  is the longitudinal position of the vehicle, yp  is the 

lateral position of the vehicle, pN  denotes the prediction horizon, and subscript ‘j’ means the j-th objects. In 

predicting the position of the surrounding vehicle, it is assumed that the size of the object is equivalent to the subject 
vehicle. The ellipse in Fig. 3 indicates the predicted probable range of the center gravity of the vehicle at the 
prediction time. A detailed description on the computational procedures to predict the probabilistic range of future 
states during a finite time horizon is described concretely in [10], [15]. 



 

B. D

For the de
be consid
roughly in
abruptly, 
Secondly
vehicle, t
expected.
enhancem
behaviors
environm
Since the
motion o
required d
there is n
horizon, t
envelope 
If the lon
surroundi
envelope 

clearance

Therefore

approachi
mode and
surroundi
behavior 
surroundi
On the ot
finite pred
the origin
subject v
change an
lane chan
investigat
which the
longitudin
safety lon
vehicle in
subject ve

Fig. 3 Over

Driving mod

etermination o
dered. The ris
nto three type
then the poten
, if the approa
then the collis
 Thirdly, ther

ment of safety,
s of the surro

mental envelop
 environmenta
r desired driv
driving mode 
o preceding v
the desired dr
is determined

ngitudinal or l
ing vehicle are

for ye   is d

es at the predic

e the environ

ing vehicle in
d the environm
ing vehicles ar

of surroundi
ing vehicles w
ther hand, the
diction horizo
nating lane of 
ehicle from th
nd safety after
nge of the sub
te the minimu
e subject vehic
nal clearance 
ngitudinal clea
n the adjacent
ehicle could b

rall architectu

e and Enviro

of the environm
ky situation a
es. Firstly, if t
ntial risk of c
aching vehicle
sion between 
re could be a 
 not only curr

ounding vehicl
e to improve s
al envelope sh
ving mode of 
could be appr

vehicle in the o
riving mode c

d to keep the o
lateral clearan
e larger than p

determined to 

ction time step

nmental envel

n the adjacent 
mental envelo
re described in
ing vehicles 

with the consid
ere could be a
on or one of th
f the subject v
he originating
r the lane chan
bject vehicle 

um longitudina
cle change the
between the s

arance over a 
t lane would b
e permitted an

ure of probab

onmental env

mental envelo
among the pro
the preceding 
ollision betwe

e in the adjace
the approachi
potential risk

rent states of su
les over a fin
safety. 
hould be defin
f the subject v
oximately clas
originating lan
could be deter
originating lan
nces expected 
predefined thr

prevent a lan

p k  are expec

lope for ye  i

lane. The dec
ope to keep th
n Fig. 4-(a). In
and the viole

deration of sen
a preceding ve
he surrounding
vehicle during 
g lane to the a
nge should be 
is required, t

al clearance be
e lane from the
subject vehicle
finite predictio
be avoided ov
nd the desired 

bilistic predic

velope decisio

ope to improve
obable behavi
vehicle in the

een the preced
ent lane accele
ing vehicle in 
k of collision 
urrounding en

nite prediction

ned based on t
vehicle before
ssified into lan
ne which has a
rmined as a l
e while mainta
at the predic

reshold value, 
ne departure. 

cted to be sm

is determined

cision process
he originating
n Fig. 4-(a), th
et rectangle 
sor uncertainty
ehicle in the o
g vehicles in t
the prediction

adjacent lane 
considered. If

then the lane 
etween the su
e originating l
e and the vehi
on horizon, th
ver a finite pr
driving mode

ction of surro

on  

e safety, first o
iors of the sur
e originating l
ding vehicle a
erates during a

the adjacent 
due to a sud

nvironment of 
n horizon sho

the desired mo
e the decision
ne keeping and
a potential risk
ane keeping m
aining safety w

ction time step
then the colli
On the othe

aller than thre

d to keep the

s of the envir
g lane while m
he pink rectan
indicates the 

ty.  
originating lan
the adjacent la
n time horizon
might be requ
f there is no v
change could

ubject vehicle 
ane over a fin
icle in the adj
hen the collisio
rediction horiz
e could be dete

unding vehic

of all, a potent
rrounding veh
lane of the su
nd the subject
a lane change
lane and the 

dden cut-in ve
the subject ve

ould be consid

otion, we shou
n of the envir
d lane change 
k of collision 
mode. In this 
with respect to
p k   between
sion risk is lo

er hand, if th

esholds, then t

e originating 

onmental env
maintaining sa
gle indicates t
region of th

ne which has 
ane is expecte
n. In this case
uired. Then th

vehicle is in th
d be permitted
and the vehic

nite prediction 
acent lane is l
on between th
zon. Therefore
ermined as a la

cle's behavior

tial risky situa
hicles could b
ubject vehicle 
t vehicle wou
 maneuver of 
subject vehic

ehicle. Therefo
ehicle but also
dered in deter

uld determine 
ronmental env
mode on an a
during a finite
case, the env

o the surround
n the subject v
w and the env

he longitudina

the collision r

lane while e

velope for a la
afety with res
the region of t
he possible b

a collision ris
d to change th
e, the lane cha
he feasibility 

he adjacent lan
d. Otherwise, 
le in the adjac
horizon. If th
larger than the

he subject vehi
e, the lane cha
ane change mo

 
r 

ation should 
e classified 
decelerates 
ld increase. 

f the subject 
le could be 
ore, for the 
 these risky 
rmining the 

the desired 
velope. The  
auto road. If 
e prediction 
vironmental 
ding vehicle. 
vehicle and 
vironmental 
al or lateral 

risk is high. 

evading the 

ane keeping 
spect to the 
the possible 
behavior of 

sk during a 
he lane into 
ange of the 
of the lane 

ne when the 
we should 

cent lane to 
e minimum 
e minimum 
icle and the 
ange of the 
ode. On the 



contrary, if the minimum longitudinal clearance between the subject vehicle and the vehicle in the adjacent lane is 
smaller than the minimum safety longitudinal clearance over a finite prediction horizon, there could be a collision 
between the subject vehicle and the vehicle in the adjacent lane during a finite time-horizon and the lane change of 
the subject vehicle should not be permitted. The decision process of the environmental envelope for a lane change 
mode is described in Fig. 4-(b).  

 
Consequently, the condition of limitation of the lateral deviation, ye , to satisfying the environmental envelope can 

be written as follows: 
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Before the determination of the environmental envelope to guarantee the longitudinal safety, we need to define the 
state of the target vehicle for the control of the longitudinal acceleration. In the case of a lane keeping mode, if the 
width of the environmental envelope for  ye  over a finite prediction horizon is large enough, it means that possible 

behaviors of surrounding vehicles in the adjacent lane are predicted to keep their lane. Then the preceding vehicle in 
the originating lane is chosen as the target vehicle for the control of the longitudinal acceleration. If there is no 
preceding vehicle in the originating lane or the clearance between the subject vehicle and the preceding vehicle is 
too far, then the virtual vehicle to follow the desired velocity is chosen as the target vehicle for the control of the 
longitudinal acceleration. 
On the other hand, one of adjacent vehicles could be expected to approach to the originating lane of the subject 
vehicle or change the lane into the originating lane of the subject vehicle. In this case, the width of the 
environmental envelope for ye  could be smaller than minimum safety width. It means that the subject vehicle could 

not keep the lane only with the steering maneuver. Generally, when drivers recognize that the neighboring vehicle 
in the adjacent lane is entering into the lane of the subject vehicle, drivers generally tend to release the throttle pedal 
or apply the brakes to decelerate [16]. According to the previous research [16], the target vehicle is generated by 
combining the preceding vehicle in the originating lane and the meaningful vehicle in the adjacent lane. Based on 
this research, the clearance and relative speed between the subject vehicle and the meaningful vehicle in the 
adjacent lane are integrated with those between the subject vehicle and the preceding vehicle in the originating lane 
for the generation of the target vehicle’s information. For instance, if the width of the environmental envelope for 

(a) Lane keeping mode        (b) Lane Chang mode 
Fig. 4 Decision process of the environmental envelope



ye  at the prediction time step j is expected to be smaller than minimum safety width as shown in Fig. 8, then the 

weighting factor, LK , to determine the target vehicle’s state for the longitudinal acceleration control is determined 

as shown in (15).  
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where, TTC means the time to collision and x  indicates the non-dimensional warning index [1]. n in (15) 
indicates the prediction time step at which the width of the environmental envelope for ye  is smaller than 

minimum safety width. 

Consequently, the integration between the preceding vehicle in the originating lane and meaningful vehicle in the 
adjacent lane is defined as shown in (16). 
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In the case of a lane change mode, the target vehicle’s states are determined by the integration between the 
preceding vehicle and the surrounding vehicle in the adjacent lane of the lane change direction.  For instance, if the 
lane change direction is left, then the target vehicle’s states are determined by the integration between the preceding 
vehicle in the originating lane and the surrounding vehicle in the left lane. The weighting factor for the integration 
in a lane change mode, LC , is defined as shown in (17). Then the integration for the determination of the target 

vehicle’s states to control a longitudinal acceleration during a lane change mode is defined as shown in (18). 
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where, the subscript ‘side-lane’ means the vehicle in the adjacent lane to which the subject vehicle changes the lane 
from the originating lane and roadW  is the road width which could be known from the vision sensor. 

After the determination of the state of the target vehicle for the control of the longitudinal acceleration, then we 
could define the environmental envelope to guarantee the longitudinal safety. In order to avoid the collision over a 
finite prediction horizon, the clearance between the subject vehicle and the target vehicle should be larger than 
minimum safety longitudinal clearance, ,x safeC , as shown in (19). 

 ,( ) , 1, ,  x x safe pC k t C k N                                                           (19) 

To satisfy the condition described in (19), the constraint of the distance error between the actual clearance and 
desired clearance could be defined as follows: 
 , ,( ) ( ) , 1, ,       x safe x des h x pd k t C C k t v k N                     (20) 

Moreover, for the improvement of the longitudinal safety, the relative speed between the subject vehicle and the 

Fig. 5 Determination of the target vehicle for the longitudinal acceleration control in a lane keeping 
mode 

(a) Environmental envelope at the prediction time 
step k = 0 

(b) Environmental envelope at the prediction time 
step k = j



target vehicle should be larger than the threshold of the relative speed, ,min xv , as shown in (21). 

 ,min( ) , 1, ,    x x pv k t v k N                                                     (21) 

Consequently, the environmental envelope to guarantee the longitudinal safety could be represented as the linear 
inequality as shown in (22). 

 , ,min ,min
,min

1 0 0
( ) , 1, , , ,

0 1 0
h x

long long d long p long long
x

v
H x k t G k N where H G

v

   
           

    (22) 

V. Robust MPC based Controller design 

As mentioned in Section I, distributed control architecture which is composed of the lateral control law based on 
robust MPC approach and the longitudinal control law based on robust MPC approach is adopted. In this research, 
the sampling time, sT , is chosen as 0.1 second and the length of the prediction horizon, pN , is chosen as 20. These 

receding horizon optimization problems are solved at each time step and the first terms of the optimal control 
sequences are applied to the system. Then receding horizon optimization problems for a shifted prediction horizon 
are solved to obtain new optimal control inputs at next time step. To solve MPC problem in MATLAB, CVXGEN 
which is designed to be utilizable in MATLAB is used as solver [17]. The MPC problem is defined using CVXGEN 
syntax, and the CVXGEN returns convex optimization solver for the defined optimization solver for the defined 
optimization problem.  

A. Background on Robust Model Predictive Control 

In this section, we present the background on robust MPC which is used to decide the desired control inputs for the 
robust control performance. The control problem based on robust MPC is classified into a feedforward control input 
for the nominal system and a linear feedback control input to reduce the error between the actual state and the 
nominal state predicted by model of the plant. 
Then the control law can be written as follows: 
 ( ) ( ) ( ( ) ( )) ( )u k u k K x k x k u k Ke                                                (23) 

where, Rm nK   is the linear state feedback gain and : ( ( ) ( ))e x k x k   is the error between the actual state and the 

predicted nominal state. In this paper, the control law of the state feedback gain is LQR. 

B. Desired Steering Angle Decision 

As mentioned above, in order to obtain the desired steering angle to keep the vehicle in the safe driving envelope 
while satisfying the robustness of the control performance under model uncertainties and exogenous disturbances, a 
feedforward steering input for the nominal lateral dynamics model and a feedback steering input for the 
compensation of the error between the actual states and the predicted nominal states should be integrated. For the 
determination of a feedforward steering input, we design the cost function as follows: 
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where, cost ,latW  is predefined weighting matrix, which penalize the differences between states and zero, 
pNW  is 

predefined weighting matrix to reduce the differences between the final position of the vehicle over a finite 
prediction horizon and the desired position, latR  and ,lat uR  are predefined weighting matrices for the reduction of 

magnitudes of steering angle control sequences and the rate of change in steering angle control sequences 
respectively. These matrices are positive-definite symmetric. 

pNW  is defined as shown in (25).  
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Since the actuator has a limitation to operate, the control input and there derivatives need to be constrained. These 
constraints are given as follows: 
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where, ,maxlatu  is the maximum magnitude of the steering control input and latS  is the maximum magnitude of the 

rate of change of the steering control input. 
In order to ensure the stability of the vehicle, the side slip angle and lateral acceleration should be restricted for 

the stability of the vehicle. Therefore the condition for the stability of the vehicle can be written as follows: 
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where,   denotes tire-road friction coefficient and ,maxyA  is the threshold of the lateral acceleration, which is 

chosen as 8m/s2. 
The constraints for the stability of the vehicle which are defined in (27) and (28) can be represented as the linear 

inequality as shown in (29). 
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Then MPC problem for the determination of the feedforward steering input could be defined by combining (5), 
(14), (24), (26) and (29) as follows: 
min (24)

. . (5), (14), (26), (29)s t
                                                                     (30) 

In order to design the robust MPC while reducing complexity, the effect of model parameter uncertainties and 
exogenous disturbances on the linear dynamics model in (5) is represented as an additive equivalent disturbance. 
Then the lateral dynamics model including the additional disturbance term is written as follows: 
 , , , , ,( 1) ( ) ( ) ( )    lat lat d lat d lat d ref lat eqx k A x k B u k F k w                            (31) 

where, 4 1
,

Rlat eqw  is the additive equivalent disturbance on the lateral dynamics model. The equivalent 

disturbance ,lat eqw  is unknown but assumed to be bounded as shown in (32). 
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C. Desired Longitudinal Acceleration Decision 

Similar to the lateral control law, the longitudinal control law should be designed to obtain the desired 
longitudinal acceleration to keep the vehicle in the safe driving envelope while ensuring the robust control 
performance. Therefore the desired longitudinal acceleration is determined by combining a feedforward input for 
the nominal longitudinal dynamics model and a feedback input to attenuate the effect on the system by model 
parameter uncertainties or external disturbances.  

In order to determine the feedforward control input for the longitudinal control of the vehicle, we design the cost 
function as shown in (33). 
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where, cost,longW  is predefined weighting matrix for the minimization of the differences between states and zero, longR  

is predefined weighting matrix to reduce the magnitudes of longitudinal acceleration sequences and ,long uR  is 

predefined weighting matrix to prevent abrupt change of longitudinal acceleration in sequences. These weighting 
matrices are positive-definite symmetric.  

The constraints on the range of the longitudinal acceleration control input and change rate during a finite 
prediction horizon are written as follows: 
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where, ,minlongu  and ,maxlongu  are the minimum and maximum magnitude of the longitudinal acceleration control 
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The simulation results are presented in Figure 8. As shown in Figure 8, it can be known that the controller shows 
quite similar performances to the human driver while changing lane. Based on these results, it has been shown that 
the proposed algorithm could reflect human driver’s driving characteristics. It means that the proposed algorithm 
could provide acceptable ride comfort in general driving situations. Since lateral offset is measured by camera 
sensors, lateral offset is plotted as discontinuous as shown in Figure 8-(a). Figure 8-(b) and (c) depict steering angle 
and longitudinal acceleration comparing results between the human driver and the controller. Lateral acceleration 
has reasonable magnitude as shown in Figure 8-(d). 
 

 

(a) Lateral offset 

 

(b) Comparison of the steering angle between the driver and the controller 

 

(c) Comparison of the longitudinal acceleration between the driver and the controller 
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(d) Lateral acceleration 

Fig. 8 Comparison between the driver and the proposed algorithm under overtaking situation 

VII. Conclusion 

A robust MPC based vehicle speed and steering control algorithm has been developed to enhance safety and 
ensure constraint satisfaction under model uncertainties and external disturbances. In order to cope with potential 
risky situation, not only current states of surrounding environment but also potential risky behaviors of that during a 
finite time horizon are considered simultaneously in determining the desired driving mode and the safe driving 
envelope. Then distributed control architecture based on robust MPC approach is used to determine the desired 
steering angle and desired longitudinal acceleration separately while satisfying reliability and reducing a 
computational burden.  

In order to verify the effectiveness of the proposed control algorithm, computer simulations have been conducted. 
The simulation results show that the proposed control algorithm enhances safety with respect to the potential risk 
and provides permissible ride comfort. Furthermore it has been shown that robust vehicle control performance can 
be obtained in the presence of additional disturbances by using the proposed algorithm.  

In the future, we should verify the performance of the proposed algorithm via vehicle tests. 
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