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ABSTRACT 

In the coming years, car manufacturers will 

continue to diversify their fleet into an ever larger 

number of vehicle types. Cars will be developed 

with a focus on new special market requirements, 

responding to the customer’s individual needs. 

Until now, at most 3-4 vehicles were derived from 

1 backbone car (e.g. convertibles, coupes). In the 

future, however, there will be many different types 

of cars within a vehicle class (like the compact 

class). BMW is developing new solutions to deal 

with this increasing diversity. Each new derivative 

will be based on a uniform vehicle architecture and 

standardized construction kits.     

 

In order to have sufficient functional degrees of 

freedom within this architecture, it is necessary to 

take all planned derivatives into account. Among 

other requirements, crash performance has a strong 

influence on the limitations of diversity. 

 

This paper describes a new virtual method to 

optimize a frontal restraint system based on finite 

element vehicle models.     

 

On the basis of a limited number of finite element 

simulations, response surface models were 

developed to identify and visualize the functional 

relationship between restraint system parameters 

and dummy responses. With these surrogate or 

meta-models, the optimization will be faster 

compared to the standard development process. 

INTRODUCTION 

In recent years, safety requirements on the structure 

and the restraint system of a vehicle have increased 

due to legislation and the activities of advocacy 

groups. This trend will continue. Adaptive restraint 

control systems ensure an optimal performance in 

different crash scenarios: the airbag pressure after 

inflation may be chosen appropriately according to 

the passenger’s size or the crash severity. 

Optimizing a highly adaptive restraint system with 

respect to all relevant load cases is already a 

complex task for only one vehicle type. In the case 

of an entire vehicle architecture, where the engineer 

needs to consider many vehicle types 

simultaneously, the developer will have to rely on 

additional specialized tooling. 

 

Until recently, restraint systems were developed 

using rigid body simulation techniques. Now, full 

Finite Element (FE) simulations have become the 

state of art, providing better accuracy but also 

higher computational costs. Therefore, due to 

limited computational resources and the large 

number of required simulation runs, direct 

numerical optimization with these FE models is not 

feasible.  

 

This paper describes how to tackle this high-

dimensional and computationally expensive 

optimization problem. At first, the design space is 

scanned systematically by means of a design of 

experiment technique (DOE). Using this data, 

surrogate or meta-models (analytical nonlinear 

functions which approximate the relation between 

system parameters and dummy responses) are 

generated with which solutions may be computed 

very quickly. These substitute models are then used 

to run numerical simulations and to visualize 

complex functional relationships between system 

parameters and dummy responses. This is 

particularly valuable as it permits the user to relate 

the solution to his engineering intuition.  

 

The paper is structured as follows: first, the 

essential mathematical methods and the basic idea 

of meta-modeling will be introduced. This topic 

includes beside the sampling method also the 

modeling quality measurement and a model fitting 

approach. The automated workflow at BMW will 

be explained. Afterwards, the benefit of the method 

will be illustrated by a practical example.        
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METHOD 

Figure 1 shows the principle concept of a surrogate 

or meta-model. The FE models represent the 

unknown transfer functions (Y(X)) between the 

restraint system parameters (input vector X) and the 

dummy injury responses (output vector Y). Starting 

from a limited number of simulations, a surrogate 

model for each dummy response is built and can be 

used to predict various unknown design 

configurations without computing any further time-

consuming FE runs.  

   

 
Figure 1: concept of meta-modeling 

For each dummy response value j an independent 

mathematical surrogate model will be fitted to the 

sample points which were calculated using the FE 

model. The parameters of the meta-model will be 

chosen in such a way that the model error is 

minimized. In order to obtain an adequate accuracy 

for the surrogate model, a sufficient number of 

support points is necessary.    

Design of Experiments DoE 

 

The method Design of Experiments (DOE) is a 

systematic approach to get the maximum amount of 

information out of limited number experiments, see 

[5]. The available DOE methods can be classified 

in two main categories: orthogonal designs and 

random designs.  

Orthogonal designs (e.g. full factorial) distribute 

the support points such that they are statistically 

independent. As a major disadvantage, the number 

of required experiments grows exponentially with 

the number of dimensions (number of input 

parameters). An optimization of an adaptive 

restraint system with approximately 10 parameters 

would require 2
10

 or 3
10

 simulations for a 2- or 3-

level full factorial, respectively. 

Random designs are commonly used in crash 

applications with a large number of parameters. 

Random means that the parameter values will 

chosen by a random process. The most common 

method in crash applications is the so-called Latin 

Hypercube Sampling, which is based on the plain 

Monte Carlo method. A Latin Hypercube Sampling 

is constructed as follows: Let n be the number of 

designs that you are intend to simulate. Each 

parameter dimension will be divided into n 

equidistant levels. Within these subspaces, the 

parameter values are chosen randomly. Each design 

is a random permutation of design levels. This 

ensures that each level is probed in the design [5]. 

Furthermore, the limited number of sample points 

will be distributed over the design space in an 

optimal way. Practical experience in optimization 

of frontal restraint systems shows that 100 – 150 

designs are typically enough to obtain predictable 

meta-models.   

Modeling 

 

A separate FE Simulation is performed for each 

design of the DOE (i.e. a particular set of restraint 

system parameters). Each simulation takes 

approximately 5-7h on a HPC Cluster with 12CPUs 

(depending on the level of detail of the FE-Model).  

The sample points and the computed results are 

used to generate the approximation functions: 

)(ˆ)( XYXY                                                 (1) 

In technical literature there is a wide range of 

approximation methods available. A commonly 

used method is regression analysis. Usually, the 

approximation function is a first or second order 

polynomial which is fitted to the support points. In 

case of smooth problems, the accuracy of the 

surrogate model improves with increasing number 

of support points. Depending on the order of the 

used polynomials, it may be possible to fit the 

approximation function exactly to all support 

points. However, for noisy data (e.g. data from 

crash analysis) there is a risk of overfitting. Figure 

2 and 3 show the regression of a 2-D and 3-D 

problem. In addition to standard regression 

analysis, BMW uses also the following 

approximation methods: 

 Moving least square approximations  

(advanced polynomial regression)  

 Fuzzy models 

 Support Vector Machines 

 Neural Networks 
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Further information about the mathematical 

background is available in [2] and [3]. 

  

Figure 2: HIC 15 Regression Analysis 2-D   

 
Figure 3: Regression Analysis 3-D 

Figure 4 shows the problem of overfitting with 

advanced polynomial regression (moving least 

square).  

 
Figure 4: moving least square with noisy data 

Model Quality 

 

The accuracy of the approximation function with 

respect to the real problem has to be checked and 

verified. Appropriate error measures are necessary 

to assess the quality of fit. The most common value 

is the so-called Coefficient of Determination R² or 

COD. The COD describes the ratio between the 

variance of the model and the total variance of the 

observed data: 
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where ),...,1( niyi  represents the true output 

values of the support points, iŷ the predicted 

output values by the model approximation and 

y the mean value of yi. If the variance between the 

predicted data and the real data is very small 

compared to the total variance of the sampling data, 

R² is close to 1, i.e., nearly 100% of the total 

variance of the problem can be explained by the 

meta-model. 

  

Another measure is the mean squared error which 

is closely related to R²: 
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The root mean squared error is the square of MSE 

and in the dimension of y: 
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The linear Correlation coefficient between the 

observed output and the fitted model may also be 

used: 
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Model Fitting 

 

As described above, it is always possible to get a 

perfect fit for a given set of values. In this case, 



Druecker | 4 

 

each calculated support point by the meta-model is 

equal the real physical value ( niyy ii ...1ˆ ). 

The error measures described would be 0 (MSE, 

RMSE) or 1 (CORR, R
2
). A solution to this problem 

is the so called cross validation method. The 

principle idea is to estimate a model with a set of 

training data and then check the prediction on 

additional test or validation data. The error between 

the results of the approximation model and the true 

data will be used to optimize the model parameters 

and to compare different modeling approaches.  

 

The selection of the validation or test data set is 

very important for the quality of the model. In our 

first approach the DOE data was separated 

randomly into training and test data. However, if 

the test data is not representative, a model with 

poor performance in the relevant region may be 

chosen. A common approach to avoid this problem 

is the use of cross validation: the data set will be 

divided randomly into, say, 10 equally sized 

subsets. In each loop j (j=1-10) the meta-model will 

be calculated without subset number j. This subset j 

is used as a test set. The 10 resulting error measures 

will be averaged, thus providing a reliable estimate 

of the model quality. In figure 5 on loop of cross 

validation is shown.     

 

 
Figure 5: on step of cross-validation 

Figure 6 shows the complete workflow of cross 

validation to calculate the best model approach. 

 

 
Figure 6: concept of model fit 

 

Post processing / Optimization 

 

The first step in post processing should be a visual 

check of the DOE data. This is necessary to find 

numerical outliers and to check the plausibility of 

the data. Therefore, the time history data for each 

injury value is analyzed. With this, it is possible to 

differentiate between numerical problems and 

outliers due to physical effects such as bottoming 

out of the head caused by low airbag pressure. 

After a manual check of the DOE data an adequate 

meta-model will be built in the previously 

described manner for each required dummy output.  

 

Two categories of post processing are available. 

The first possible way is the optimization “by 

hand”. This means that the main dummy outputs 

(e.g. chest acceleration, HIC15, …) will be plotted 

in 2 or 3D response surface plots. These plots are 2 

or 3D cuts in the multidimensional response 

surface. If the number of relevant parameters is 

small (e.g. 2 or 3), the user can find the optimum 

by looking at the plots. Figure 7 illustrates this. 

Both diagrams show the relationship between the 

head acceleration (HIC15) and 2 restraint system 

parameters (seatbelt: switch time adaptive load 

limiter; airbag: power gas generator). In addition to 

the seat belt and airbag generator, the HIC depends 

also on the vent performance of the airbag. In the 

diagram on the left side, the trigger time of the 

adaptive airbag vent is very small (35ms). In the 

diagram on the right side, the adaptive vent is 

closed. As one can see, the smallest achievable 

injury level of the head (which is represented by 

the HIC 15) depends on the vent performance. 

These plots are particularly valuable, as they permit 

the engineer to visualize the potential of restraint 

system components and to relate the solution to his 

engineering intuition. 
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Figure 7: visual post-processing with response 

surface plots (e.g. HIC 15) 

In case of parallel investigation of more than 1 

vehicle it might be impossible to get an overview 

over the complete optimization problem. Therefore, 

it is possible to use standard numerical 

optimization methods to find the optimum. A 

common method is the Evolutionary Algorithm 

(EA). The optimizer uses the surrogate models to 

calculate individual parameter sets. Compared to a 

complete FE run a design calculation on the 

surrogate model takes only a few seconds. With 

this, it is possible to run a numerical optimization 

with multiple vehicles and load cases in an 

acceptable time (< 1h).  

 

This approach, however, is limited: The 

optimization result is only as good as the prediction 

quality of the meta-model. This implies that the 

optimum is normally not better than the best DOE 

design. Therefore local optima of the 

approximation functions will always be in regions 

of DOE points. But nevertheless, the numerical 

optimization helps the user to find very fast the best 

solution with respect to additional constraints. 

When an optimum is found the last step should 

always be the recalculation of the parameter set by 

an additional FE run.       

Process Automation 

  

To integrate the meta-model method into the 

standard development process, it was necessary to 

create specific software. The goal was to create a 

tool which allows the user to optimize their 

occupant models without requiring deeper 

knowledge of the described mathematical methods. 

The complete process workflow from the FE 

simulation model to the resulting meta-model is 

shown in figure 8. The user can control all steps 

very easily by means of a specific Graphical User 

Interface.   

 
Figure 8: Workflow Process  

The occupant simulation models have to be built in 

a particular structure, which is shown in figure 9. 

With this data management, we are able to 

optimize the restraint system simultaneously for 

multiple vehicle configurations of one architecture.  

 

Figure 9: Project structure  

EXAMPLE 

The following example shows the practical benefit 

of using the meta-model technique in the 

development process of a restraint system for 2 

different vehicles (driver side only). Three main 

load cases from FMVSS208 were investigated 

simultaneously: 

 

 35mph Hybrid-III 50% (AM50) belted, 

rigid barrier 0° 

 35mph Hybrid-III  5% (AF05) belted, 

rigid barrier 0° 

 25 mph Hybrid-III 50% (AM50) unbelted, 

rigid barrier 0° 

 

The differences in the vehicle geometry are shown 

in figure 11.  Derivate 1 (red) contains a classical 

sedan seating position with a flat steering column. 

The second vehicle (black) is a small SUV with a 

higher seating position (command position) and a 

larger angle of the steering column. Both vehicles 

have different crash pulses.  

In Table 1, the considered restraint system 

parameters are shown and classified. Some 
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parameters like the airbag generator power are 

equal for both vehicles in all load cases. Other 

parameters can be chosen independently for each 

load case.   

 

Figure 10: test condition system optimization 

 

Figure 11: geometrical range in derivates 

 

Table 1: overview system parameter 

 
 

Data base 

 

The results of this study are based on validated 

occupant crash simulation models of both cars. As 

an example, one of which is shown in figure 12.  

 

 

Figure 12: CAE model driver side 

The evaluation of the simulation models includes 

the common injury values of the Hybrid III dummy 

which are specified in the FMVSS208. Therefore, 

every configuration has at least 11 injury values 

from different dummy regions (head, neck, chest, 

femur). In addition to the legal injury values, also 

the US-NCAP limits were considered for the 

optimization.  

The resulting DOE table contains 11-15 dummy 

responses and 5-8 system parameters per load case. 

Therefore, approximately 85 meta-models were 

built. A DOE with 120 designs (6 load cases per 

design = 720 FE simulations) was automatically 

calculated on a HPC crash cluster. 

Results 

  

To reduce the complexity of the optimization 

problem, the range of response values of the DOE 

was checked and compared to the legal limits. As 

an example, figure 13 illustrates the results for one 

load case of vehicle 1. In this load case (AF05 

35mph belted), 6 injury measures were close to the 

allowed limits. The most critical quantity is the 

chest acceleration which is in some configurations 

higher than the critical value (i.e. >80% of the legal 

limit). For this output, the meta-model was checked 

in more detail. In addition to the trigger time of the 

adaptive load limiter (when the force level is 

switched from high to low), the acceleration 
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depends also on the generator power of the driver 

airbag. All other system parameters have no 

significant influence on the acceleration level.  

 

 
Figure 13: most critical injury values vehicle 1 

Hybrid-III AF05 35mph belted 

Figure 14 shows the relationship between the chest 

acceleration and the 2 relevant system parameters. 

The blue and light green area of the response 

surface represents the feasible area where any 

choice of parameters will yield a subcritical 

response. Note that the generator power of the 

driver airbag will affect several load cases, 

however, the trigger time only this one. Therefore, 

the choice of generator power has to take all load 

cases into account. 

 

 

Figure 14: relationship between chest 

acceleration, driver airbag and adaptive seatbelt 

load limiter for AF05 35mph belted in Vehicle 1 

To identify the most cross-linked restraint system 

parameters (i.e. having relevant influence on 

several load cases), all meta-models for the critical 

quantities were checked step by step. The 

conclusion is shown in table 2. The airbag 

generator has a strong influence on the chest 

acceleration in all load cases considered, and, 

additionally, on the HIC15 in the AM50 belted 

configuration. The influence of input parameters on 

the various load cases is shown in figure 15, 

illustrating the level of interdependency.  

 

Table 2:  relevant restraint system parameter 

for most critical injury values 

 
 

 
Figure 15: relationship from generator power 

driverbag to chest acceleration (AM50 unbelted 

top; AM50 belted middle) and HIC 15 (AM50 

belted bottom)  

The response surface of the other relevant load 

cases shows that the chosen gas generator power 

must not be too low. Especially for the HIC15 the 
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meta-model shows a risk for bottoming out of the 

head in combination with an early switch time of 

the adaptive seatbelt load limiter. Therefore a 

compromise for the choice of the generator power 

is necessary.    

 

In addition to the manual optimization of the 

restraint system a numerical optimization of the 

meta-models was performed. The objective was 

minimizing the probability of injury according to 

the US-NCAP rating:  

 

)1)(1)(1)(1(1int femurchestneckheadjo PPPPP   

 

The injury risk values were calculated with the 

functions shown in Table 3:  

 

Table 3: injury risk curves for frontal impact 

AM50  [4] 

 
 

To find a solution which also fulfills the legal 

limits of the FMVS208, additional constraints were 

considered. Based on the meta-models, a numerical 

optimization with an evolutionary algorithm 

method (EA) was carried out. With 5000 runs (100 

generations, population size 50) of the meta-models 

(total calculation time < 15min on a Linux 

workstation) the best value for the relative risk 

score was found. With the indentified parameter 

combination, all considered constraints derived 

from FMVSS208 (chest acceleration, HIC, etc) 

were satisfied. The convergence curve of the 

optimizer is shown in figure 16.  

 

After the optimization an additional FE run was 

done with the indentified parameter configuration. 

The differences between the predictions of the 

meta-models and the true FE values are illustrated 

in Table 4. As one can see the predicted probability 

values were nearly the true values calculated by the 

FE simulation. A slightly higher delta is observed 

for the femur probability. The reason for that is a 

very low level of the femur forces caused by the 

use of a knee airbag. But the influence of this delta 

on the total probability is very small.         

 

 
Figure 16: convergence of the objective function 

(probability of injury) 

Table 4: optimization result with meta-models 

and comparison to FE-simulation 

 

CONCLUSIONS 

The described meta-model approach is very useful 

for optimizing restraint systems. Especially in the 

simultaneous optimization of more than 1 vehicle, 

the method helps to identify the important 

relationships. The influences of relevant system 

parameters (e.g. airbag performance) can be 

checked visually in different load cases. Thus, the 

method enables the user to find the best 

compromise satisfying all legal requirements and 

those of consumer tests.  

Additionally, the method presented requires 

significantly less work than the standard 

development method without applying DOEs, 

meta-models and visualization tools (pre-/post-

processing of FE-simulations).  
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