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ABSTRACT 

In this paper we deal with different ways of statistical 
modeling of real world accident data in order to 
quantify the effectiveness of a safety function or a 
safety configuration (i.e. a specific combination of 
safety functions) in vehicles. It is shown that the 
effectiveness can be estimated along the so-called 
relative risk, even if the effectiveness does depend on a 
confounding variable, which may be categorical or 
continuous. In a second step the quite usual and from a 
statistical point of view classical logistic regression 
modeling is investigated. Main emphasis is laid on the 
understanding of the model and the interpretation of the 
occurring parameters. It is shown that the effectiveness 
of the safety function also can be detected via such a 
logistic approach and that relevant confounding 
variables can and should be taken into account. The 
interpretation of the parameters related to the 
confounder and the quantification of the influence of the 
confounder is shown to be rather problematic. All 
theoretical results are illuminated by numerical data 
examples. 

INTRODUCTION 

It is a relevant topic in accident research to quantify the 
possible effectiveness of a safety function or a safety 
configuration in passenger vehicles on the accident 
behavior. When dealing with a primary safety function, 
it is most relevant to determine the ability of this 
function to avoid accidents. In classical statistical theory 
one would assume that two different groups of vehicles 
can be observed over a certain period (e.g. one year) 
driving on the roads (experimental group and control 
group). The two groups are supposed to only differ 
according to whether the respective vehicles are 
equipped or not equipped with the safety function or 
safety configuration. Having observed the accident 
behavior, one could compare the two relative 
frequencies of having a specific type of accident in the 
two groups. To be a little bit more specific, we compare 
along the just described lines the two probabilities of 
having a (specific) accident given that the safety 
function is active or not. If we assume that for the 
random variable Z the event {Z=1} indicates that the 

accident of interest occurs, where S indicates whether 
the safety configuration is active (S=1) or not (S=0) and 
X denotes a further random variable (confounder) which 
may have some influence on the accident behavior 
and/or the safety equipment, we compare the following 
conditional probabilities. 

 ( ) { }1| , , 0,1 ,P Z S r X x r x= = = ∈ ∈X  (1) 

Here X denotes the set of all possible outcomes of X. In 
applications X may be the gender of the driver, the age 
of the driver or of the vehicle, the mass of the vehicle or 
a selection (or even all) of these values as an example. 
So much for the pure statistical theory, in the real world 
one cannot carry out such an investigation by obvious 
reasons. The possible effectiveness of a safety function 
has to be quantified on the basis of accident data, only. 
This immediately implies that one cannot estimate the 
probability given in (1). If we extend the definition of 
the accident indicator Z as follows 
 

0, accident neutral to the safety function of interest
1, accident sensitive to the safety function of interest
2, no accident or accident not reported to database

Z
⎧
⎪= ⎨
⎪
⎩

 (2) 

then it is reasonable to assume that we can estimate the 
conditional probability 

 { }( ) { }1 | , , 0,1 , 0,1 ,P Z S r X x Z r x= = = ∈ ∈ ∈X  (3) 

only. The expression in (3) is a conditional probability 
which is indicated by ''|'' and quantifies the probability 
of the event Z=1 given that S=r (safety function active 
(r=1) or not (r=0)), given that we are in the subgroup 
described by the confounder X=x and given that an 
accident has occurred which has been reported to the 
underlying accident database and that this accident is 
neutral or sensitive to the safety function or safety 
configuration of interest (Z ∈ {0,1}). 
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However, in order to quantify a possible effectiveness 
of the safety function, we still are interested in the 
following ratio for x ∈ X 

 
( )
( )

1| 1,
( ) :  ,  

1| 0,
P Z S X x

RR x x
P Z S X x

= = =
= ∈

= = =
X  (4) 

which quantifies the performance of the safety function 
and is called relative risk in the following. The quantity 

 1 ( ) : ( ) ,  RR x Eff x x− = ∈X  (5) 

is a measure of the effectiveness of the safety function 
for the group X=x, and describes the rate of accidents of 
interest within the group X=x which can be avoided by 
the safety function. It is shown in this paper that the 
relative risk as well as the effectiveness of a safety 
function or safety configuration reasonably can be 
estimated on the basis of accident data only. There is no 
conceptual difference between the cases where the 
confounder X is categorically or continuously 
distributed, as will be shown. 

Of course many papers in the literature use a similar 
approach for quantifying the effectiveness of a safety 
function (cf. Tingvall et al. (2003), Martin et al. (2003), 
Dang (2004), Farmer (2004), Otto (2004), Page and 
Cuny (2004), Grömping et al. (2005) and Kreiss et al. 
(2005)). For a methodological overview concerning 
statistical methods applied to real-world accident data 
we refer to Hautzinger (2003), Grömping et al. (2007) 
and Hautzinger et al. (2008), while a complete statistical 
description of the logistic regression method can be 
found in Agresti (1996). 

Many of the approaches rely on a logistic regression 
modeling of accident data, which not really is necessary 
for estimating RR(x), cf. (4). The present paper 
discusses estimates for the relative risk RR(x) and sheds 
some light on the interpretation of the parameters of a 
logistic regression when applied to accident counts. In 
principle there are at least two possibilities to introduce 
a logistic modeling to the situation of interest. From a 
classical statistical point of view one would be tempted 
to model the conditional probability of suffering an 
accident of interest, i.e. 

 
( )

( )
( ) { }0 1 2

0 1 2

1 | ,

exp
, 0,1 ,

1 exp

P Z S r X x

r x
r x

r x
α α α
α α α

= = =

+ ⋅ + ⋅
= ∈ ∈

+ + ⋅ + ⋅
X

 (6) 

Here we assume for the sake of simple notation that X is 
univariate. Since we do not observe absolute numbers of 
traffic participants and following the discussion from 

above it may be more appropriate to use the logistic 
modeling in a different context as follows 

 
{ }( )

( )
( )

0 1 2

0 1 2

1| , , 0,1

exp
1 exp

P Z S r X x Z

r x
r x

β β β
β β β

= = = ∈

+ ⋅ + ⋅
=

+ + ⋅ + ⋅

 (7) 

i.e. modeling the conditional probability that an accident 
of interest occurs given that the safety function is on or 
off (S=1 or 0), that the confounder X takes the value x 
(e.g. a specific age of the vehicle) and given that an 
accident, which is neutral or sensitive to the safety 
function or safety configuration of interest has 
happened. Using the model (7) the typically wanted 
assertion 

 
{ }( )

( )0 1 2

1 | , , 0,1

1
1 exp

P Z S r X x Z

r xβ β β

= = = ∈

=
+ + ⋅ + ⋅

 (8) 

holds, which definitely is not the case for the modeling 
in (6) because the event Z=1 is not the complement of 
the event Z=0. To see this recall that the complement to 
the event that an accident of interest (i.e. sensitive to the 
safety function) has happened ({Z=1}) means a neutral 
accident ({Z=0}) or another accident or (and this by far 
is largest group) no accident (or a not reported accident) 
at all has happened ({Z=2}). 

As it is argued above we need to get some information 
on the conditional probability P{Z=1| S=r, X=x} or more 
realistic about the ratio 

 
( )
( )

1| 1,
1 | 0,

P Z S X x
P Z S X x

= = =
= = =

 (9) 

Later we will see what the implications of model (8) for 
(9) concerning this question are. Moreover it is of great 
interest what the interpretations of the parameters β1 and 
β2 (cf. model (7)) as well as α1 and α2 (cf. model (6)) are 
and how they relate to each other. So the main focus of 
the paper is to shed some light on the correct 
interpretation of results of (standard) logistic regression 
in accident analysis. 

The paper is organized as follows. We start in the next 
section with an example from real-world accident data 
and continue in a further section with simulated accident 
data in order to be able to observe what the two 
different modelings ((6) and (7)) really measure. In 
simulated data we have the advantage that we really and 
exactly know what the underlying situation is. We 
continue in describing in detail the already mentioned 
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two different logistic regression modelings as well as 
their assumptions, consequences and interpretations. 
Finally we come back to our simulated accident data 
from the next but one section and apply the developed 
methodology to this data. There we will see whether and 
if yes to what extend we can estimate parameters of the 
two models. 

REAL – WORLD ACCIDENT DATA EXAMPLE 

Consider the following results obtained from real-world 
accident data collected within the German In Depth 
Accident Study (GIDAS). We focus on the 
quantification of the effectiveness of the electronic 
stability control (ESC) for passenger vehicles in 
Germany. From 12,833 recorded passenger vehicles 
involved in accidents, for which we know about the 
ESC-equipment and about the gender of the driver, a 
logistic regression can be carried through for the 
dependent variable 

 
0, accident neutral to ESC
1, skidding accident

Z ⎧
= ⎨
⎩

 (10) 

We have chosen the accident category parking accident 
as neutral to ESC, as we assume that ESC has no 
influence on the risk of suffering a parking accident. 
The observed data are condensed in the 2 × 2 
contingency tables displayed in the Tables 1 and 2, 
separately for female and male drivers. 

 ESC equipped 

Accident type No Yes 

Parking accident 90 9 

Skidding accident 387 9 

Table 1: Real-world accident data for passenger cars 
with female driver 

 ESC equipped 

Accident type No Yes 

Parking accident 191 31 

Skidding accident 782 38 

Table 2: Real-world accident data for passenger cars 
with male driver  

From Tables 1 and 2 one easily can compare the rates of 
ESC-equipment for the group of ESC-sensitive skidding 
accidents with the ESC-rates for the neutral accidents 
for the two gender categories. Doing so we obtain for 
male drivers a computed (crude) effectiveness of ESC 
of  

 , ,
38 1911 1 0.701 70.1%
782 31crude male crude maleEff OR ⋅= − = − = =

⋅
 (11) 

and for female drivers of Effcrude, female= 76.7%. We refer 
to the value ORmale, crude = (38·191)/(782·31) = 0.299 as 
the crude Odds ratio for accidental situations with male 
drives and accordingly for female drivers (ORfemale, crude 
= 0.233). Adding all accidents in the four categories for 
male and female drivers we obtain a (crude) overall 
effectiveness of ESC of Effcrude= 71.8%. For the 
calculation of standard odds-ratios we refer to Evans 
(1998) or Agresti (1996). 

At this place we even do not want to stick to the 
absolute values of the effectiveness of ESC but to the 
fact that we obtain a 9.5% higher effectiveness of ESC 
in accidental situations in which the vehicle was driven 
by a woman. Rather we interpret the obtained result as 
an indication that we should include gender of driver as 
an explaining variable (confounder) into the logistic 
regression analysis. We expect of course a positive 
efficiency for both ESC-equipment and female drivers 
(compared to male drivers). Interestingly the results are 
not as expected. Standard software leads to the 
astonishing result that the coefficient for the variable 
ESC (1=ESC on board) is -1.260 (leading to an 
effectiveness of 71.6% but that the coefficient for the 
variable Gender of Driver (1=female driver) mounts to 
+0.032, leading to a negative effectiveness of -3.3% for 
female drivers. This is in contrast to the above results 
obtained when the accidents are considered separately 
for male and female drivers. 

We refer to Kreiss et al. (2005), where a rather similar 
result of higher effectiveness of ESC for vehicles with 
female drivers has been described. There it is argued 
that the higher effectiveness of ESC in accidents with 
female drivers most likely is a pseudo-effect, which can 
be explained by a high correlation of gender of driver 
and size of vehicle. But this question is not a major 
point within this example and also within this paper. 

In order to get an impression what is going on and what 
might go wrong we continue in the next section with 
simulated accident data from a quite simple model, 
which we will discuss later in detail in the section on 
logistic regression modeling Type II. It is necessary to 
consider simulated accident data because only in such a 
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case we are able to see what may happen and to 
thoroughly decide whether a suggested procedure works 
well or not. 

SIMULATED DATA EXAMPLE 

Let us assume that we have n=1,000,000 vehicles on the 
road. Further assume that 30 % of the vehicles are 
equipped with ESC. We think of gender of driver as a 
confounder X (X=1 refers to female and X=0 to male) 
and observe skidding accidents (i.e. Z=1) as accidents 
sensitive to ESC (accidents of interest) and some kind 
of neutral accidents (e.g. parking accidents) which refer 
to Z=0. Assume that the probability of suffering a loss 
of control accident for a passenger car is modeled 
according to the following logistic-type probability 

 
( )

( )
( )

0 1 2

0 1 2

1 | ,

exp
1 exp

P Z S r X x

r x
r x

β β β
β β β

= = =

+ ⋅ + ⋅
=

+ + ⋅ + ⋅

 (12) 

for all r,x ∈ {0,1} and as parameters we choose 

 0 1 25.0 0.35 0.50β β β= − = − = +  (13) 

This means that we assume a rather high positive 
effectiveness of ESC as well as a positive effectiveness 
of gender equal to male on the risk of suffering a 
skidding accident. From the above settings we obtain 
Table 3, showing the probabilities for suffering a 
skidding accident when driving a certain period, e.g. 
one year, on the roads. Of course these probabilities 
have to be rather small, since accidents are rare events.  

 Gender 

ESC equipped male (''0'') female (''1'') 

No (''0'') 6.93 10-3 1.11 10-2 

Yes (''1'') 4.73 10-3 7.77 10-3 

Table 3: Probabilities for a skidding accident 

The assumption (12) not really coincides with the 
typical binary logistic regression modeling for accident 
data. There typically the conditional probability 

( )1| , ,a reported accident has happenedP Z S r X x= = =
 (14) 

is modeled by the expression given on the right hand 
side of (12). This really makes a difference and we will 
discuss this point later in detail. 

We further assume that 80% of the vehicles are driven 
by male drivers. The exact distribution of male and 
female drivers within ESC-equipped and non-equipped 
vehicles is as follows. 

 Gender  

ESC 
equipped 0 1 sum 

0 600,000 100,000 700,000 

1 200,000 100,000 300,000 

sum 800,000 200,000 1,000,000 

Table 4: Driver distribution in ESC-equipped and 
non-equipped vehicles 

Table 4 reflects that 30% of the vehicles are equipped 
with ESC and shows that 50% of the females drive an 
ESC-equipped vehicle and only 25% of the males drive 
an ESC-equipped vehicle. All these values refer to 
exposure data (vehicles on the road) and not accidents. 

According to our assumption we obtain by Monte Carlo 
simulation from the probabilities of Table 3 the accident 
counts displayed in Table 5. 

 Gender  

ESC 
equipped 0 1 sum 

0 4,009 1,097 5,106 

1 951 779 1,730 

sum 4,960 1,876 6,836 

Table 5: Simulated numbers of skidding accidents       
''Z=1'' 

Concerning the neutral accidents we consider the two 
scenarios shown in Tables 6 and 7. 

Scenario I (cf. Table 6) rather accurately resembles the 
underlying exposure distribution (cf. Table 4) according 
to equipment with ESC and gender of the driver. 
Scenario II (cf. Table 7) accurately resembles the ESC-
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equipment distribution within the two gender groups 
(compare the distribution within the columns of Tables 
4 and 7) but the probability of suffering a neutral 
accident varies with the gender of the driver.  

 Gender  

ESC 
equipped 0 1 sum 

0 5,760 960 6,720 

1 1,920 960 2,880 

sum 7,680 1,920 9,600 

Table 6: Neutral accidents ''Z=0'' (scenario I) 

and  

 Gender  

ESC 
equipped 0 1 sum 

0 4,050 2,100 6,150 

1 1,350 2,100 3,450 

sum 5,400 4,200 9,600 

Table 7: Neutral accidents ''Z=0'' (scenario II) 

Using the SPSS-routine logistic regression the 
following estimates for scenario I (i.e. skidding 
accidents according to Table 5 and neutral accidents 
according to Table 6) are obtained: 

 0 1 2
ˆ ˆ ˆ0.362 0.341 0.495I I Iβ β β= − = − = +  (15) 

The estimated coefficient 1̂
Iβ  and 2

ˆ Iβ  perfectly match 
the underlying situation, cf. (13). However the estimator 

0
ˆ Iβ  is not consistent. This is not surprising because this 

value mainly controls the absolute value of the 
corresponding probability in (12) and this is not 
comparable with the relative frequencies within the 
group of accidents only. 

The results for scenario II, i.e. skidding accidents 
according to Table 5 and neutral accidents according to 
Table 7, read as follows 

 0 1 2
ˆ ˆ ˆ0.010 0.341 0.640II II IIβ β β= − = − = −  (16) 

It can be seen that 1̂
IIβ  still works rather well, but 2

ˆ IIβ  
does not. Why this is the case will be discussed in a 
later section of this paper. 

Finally let us see what happens within our two data 
scenarios I and II when we apply the logistic regression 
routine without taking the gender of the driver as a 
confounding variable into account. Then we come up 
with simple 2 × 2 contingency tables (cf. Tables 8 and 
9) 

 Accident 

ESC equipped neutral (''0'') skidding (''1'') 

0 6,720 5,106 

1 2,880 1,730 

Table 8: Simulated accident data according to 
scenario I 

 Accident 

ESC equipped neutral (''0'') skidding (''1'') 

0 6,150 5,106 

1 3,450 1,730 

Table 8: Simulated accident data according to 
scenario II 

The estimators for the effectiveness of ESC in the 
merged situation and without any confounding variable 
are rather easily computed, cf. Evans (1998) or Agresti 
(1996), and read as follows 

 1 0.791 and 1 0.604I IIEff Eff− = − =  (17) 

It can be seen that both values substantially differ from 
the underlying effectiveness of  

 1 0.705ModelEff− =  (18) 

This demonstrates that it is essential to include a 
confounding variable when there is one with a non-
negligible influence. 
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LOGISTIC MODELING TYPE I 

In this section we deal with the following logistic 
regression modeling for the probability of suffering an 
accident of interest given the states of the safety 
function, the value of the confounder and the fact that 
an accident of interest or a neutral accident has 
happened. To be precise we assume 

 
{ }( )

( )
( )

0 1 2

0 1 2

1| , , 0,1

exp
1 exp

P Z S r X x Z

r x
r x

β β β
β β β

= = = ∈

+ ⋅ + ⋅
=

+ + ⋅ + ⋅

 (19) 

for r ∈ {0,1}, x ∈ X. β0, β1 and β2 denote the parameters 
of the model. 

We emphasize that the conditional probability in (19) 
varies not only in r and x (the status of the safety 
function and the confounder) but also with the random 
event Z ∈ {0,1}. This means for example that if the 
probability of suffering an accident of neutral type 
changes, then the modeled conditional probabilities will 
vary as well. This already explains that the 
interpretation of the coefficients β1 and β2 really is 
delicate.  

(19) is equivalent to assume 

 
{ }( )
{ }( )

0 1 2

1| , , 0,1
ln

1 1| , , 0,1
P Z S r X x Z

P Z S r X x Z

r xβ β β

⎛ ⎞= = = ∈
⎜ ⎟⎜ ⎟− = = = ∈⎝ ⎠

= + ⋅ + ⋅

 (20) 

i.e. a linear relationship of the logit (the left hand side of 
(20)) on the values r and x of S and X, respectively. For 
later reference we state here that (21) holds true. 

 
{ }( )

( ) { }
1 1| , , 0,1

0 | ,  , 0,1

P Z S r X x Z

P Z S r X x x r

− = = = ∈

= = = = ∀ ∈ ∈X
 (21) 

Standard statistical software now easily allows to 
compute estimators 0β̂ , 1̂β  and 2β̂  from observations 
(Zk,Sk,Xk), k=1, ... , n. Such observations typically are 
provided from accident databases. 

The main question now is, how one can interpret the 
parameters β0, β1 and β2. To receive some results in this 
direction observe 
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{ }( )

{ }( )
( )

1| ,

1| , , 0,1

, , 0,1
,

P Z S r X x

P Z S r X x Z

P S r X x Z
P S r X x

= = =

= = = = ∈

= = ∈
⋅

= =

 (22) 

Since 
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( )
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( )

( )
( )

( ) ( )

, , 0,1
,

, , 1 , , 0
, ,

1 | , 0 | ,

P S r X x Z
P S r X x

P S r X x Z P S r X x Z
P S r X x P S r X x

P Z S r X x P Z S r X x

= = ∈
= =

= = = = = =
= +

= = = =

= = = = + = = =

(23) 

one obtains from (23) and (19) 
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P Z S r X x P Z S r X x

P Z S r X x

P Z S r X x Z
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= = = = = = = ∈
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⇔
= = =

⋅ − = = = ∈

= = = = ∈

⋅ = = =
 (24) 

and therefore 

 
( )

( ) ( )0 1 2

1 | ,

exp 0 | ,

P Z S r X x

r x P Z S r X xβ β β
= = =

= + ⋅ + ⋅ ⋅ = = =
(25) 

(25) looks rather similar to a logistic regression model 
for the conditional probability P(Z=1|S=r,X=x), but it is 
not! To see this observe that 
P(Z=0|S=r,X=x) ≠ 1-P(Z=1|S=r,X=x) because Z also can 
take the value 2, which stands for the event '''no 
accident or accident not reported to data base'''. The just 
stated inequality does not even hold approximately, 
since both probabilities - in contrast to P(Z=2|S=r,X=x) - 
typically are extremely small. But the following 
essential equality is true 

 
( )
( )

( )
( )

1
1 | 1, 0 | 1,
1| 0, 0 | 0,

P Z S X x P Z S X x
e

P Z S X x P Z S X x
β= = = = = =

= ⋅
= = = = = =

(26) 

for all x ∈ X.  
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For further calculations we need the following essential 
assumption 

Assumption A1: Assume that the events ''S=r'', r ∈ 
{0,1}, and ''Z=0'' are independent (given that X=x 
holds).  

(A1) implies that P(S=r|Z=0,X=x)=P(S=r|X=x) for 
x∈{0,1} and x ∈ X. (26) leads under assumption (A1) 
and because of 

 

( )
( )

( )
( )

( )
( )

( )
( )

0 | ,

0, ,
,

0, |
|

0 | ,  by A1 for 1, 2
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= = = =
= ⋅

= = =

= = =
=

= =

= = = =

 (27) 

immediately to 

 
( )
( )

1
1| 1,

1 ( )
1| 0,

P Z S X x
Eff x e

P Z S X x
β= = =

− = =
= = =

 (28) 

Thus it has been shown that a logistic regression 
modeling (19) on the accident level leads under the 
reasonable assumption (A1) to a constant relative risk or 
effectiveness of the safety function in dependence of the 
confounder value x. The logistic regression approach 
(19) does not allow for a relative risk or effectiveness of 
a safety function which varies with the value x of the 
confounding variable X. For a method which allows for 
relative risk and effectiveness of the safety function 
which may vary with the value x of the confounding 
variable X we refer to Kreiss and Zangmeister (2011). 

A remaining question still is how one shall interpret 
0β  

and 
2β . Since there is no hope of interpreting 

0β , the 

question is whether 
2β  describes the influence of the 

confounding variable X not only for the conditional 
probability P(Z=1 | S=r,X=x,Z ∈ {0,1}) on the accident 
level but also for the conditional probability 
P(Z=1 | S=r,X=x) of interest. One might be tempted to 
assume that this indeed is true. We will investigate this 
question in the following. To do so we assume within 
the model (19) that the confounding variable X is 
categorical and takes the values 0 and 1, only. 

From the key equation (25) one obtains for r ∈ {0,1} 
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e
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Now for r, x ∈ {0,1} and if assuming (A1) 

 

( )
( )

( )
( )

( )
( )

( )
( )

0 | ,

0, ,
,

0, |
|

0 |

P Z S r X x

P Z S r X x P X x
P X x P S r X x

P Z S r X x
P S r X x

P Z X x

= = =

= = = =
= ⋅

= = =

= = =
=

= =

= = =

 (30) 

Thus one obtains for r ∈ {0,1} 
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 (31) 

which immediately leads to the following formula 

 

( 1 1 1)
( 1 1 0)
( 1 0 1)
( 1 0 0)

1

P Z S X
P Z S X
P Z S X
P Z S X

= | = , =
= | = , =
= | = , =
= | = , =

=  (32) 

(32) means that the ratio of probabilities of having an 
accident of type of interest given X=1 or X=0, when 
driving on the roads, does not vary with having the 
safety function on board or not. Still the confounder 
very well may have some influence on the risk of 
suffering an accident of interest. 

β2 describes the difference of the relative risk of having 
a neutral accident and the relative risk of having an 
accident of interest with or without the safety function 
active for the two groups X=0 and X=1. For example 
β2=0 means that there is no difference in the relative 
risks for neutral or relevant accidents. Even so there still 
may be a significant influence of the confounding 
variable on the probabilities of suffering a neutral or a 
relevant accident themselves. 

Let us state another assumption: 

Assumption A2: Assume that the conditional 
probability of suffering an accident of interest for any 
specific given value X=x is independent of the value x, 
i.e. 
 ( 0 | ) is independent of P Z X x x= = ∈X  (33) 

With this assumption one obtains from (31) that 
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( )
( )

2
1 | , 1
1| , 0

P Z S r X
e

P Z S r X
β= = =

=
= = =

 (34) 

which may be regarded as the typically interpretation 
for β2, cf. formula (28). 

It is common in literature to interpret β2 according to 
(34) as the influencing 'effect' of the confounding 
variable X without further thoughts on the plausibility of 
assumption (A2), like described in the introductory 
example. 

The question is whether or not assumption (A2) is 
reasonable. At first it can be seen that assumption (A2) 
is equivalent to 

Assumption A3: Assume that the events ''Z=0'' and 
''X=x''  are for all x ∈ X independent which may be 
expressed with 
 ( 0, ) ( 0) ( )P Z X x P Z P X x= = = = ⋅ =  (35) 

This means that the category of neutral accidents is not 
only neutral concerning the safety function but also 
neutral according to the confounding variable. In other 
words assumption (A2) or equivalently assumption (A3) 
assumes that the probability of suffering a neutral 
accident is the same for all subgroups X=x, x ∈ X, 
described by the confounder. This seems to be hardly 
justifiable and therefore the above interpretation of β2 is 
more than doubtful. Thus, one has to stay with (31) and 
interpret β2 according to (31). 

Hence, there is really a difference in interpreting the 
parameters β1 (cf. (28)) and β2, cf. (31). 

LOGISTIC MODELING TYPE II 

A different and also possible modeling is to deal with 
conditional probabilities like 

 ( ) { }1| , , 0,1 ,P Z S r X x r x= = = ∈ ∈X  (36) 

directly and not additionally to condition on the event Z 
∈ {0,1} that an accident of neutral or relevant type has 
occurred. E.g. to assume a logistic regression model of 
the following form 

 ( ) ( )
( )

0 1 2

0 1 2

exp
1| ,

1 exp
r x

P Z S r X x
r x

α α α
α α α
+ ⋅ + ⋅

= = = =
+ + ⋅ + ⋅

(37) 

for r ∈ {0,1} and x ∈ X. 

The conditional probability in (37) in contrast to the 
conditional probability (19) does not vary with the 
random event Z ∈ {0,1} and therefore does not vary 
with changing probabilities of suffering an accident of 
neutral type. This indicates that the interpretation of the 
coefficients α1 and α2 might be easier compared to the 
coefficients β1 and β2 in model (19). 

Of course in this situation (and this again is in contrast 
to model (19)) we do have 

 ( ) ( )0 | , 1 | , 1P Z S r X x P Z S r X x= = = + = = = ≠ (38) 

This implies that 

 ( ) ( )0 1 2

10 | ,
1 exp

P Z S r X x
r xα α α

= = = ≠
+ + ⋅ + ⋅

(39) 

Note that both probabilities in (37) and (39) typically 
are extremely small and not even approximately add up 
to one! 

Assume for example that the probability of having an 
accident of relevant type, i.e. Z=1 within a certain 
period (e.g. one year), is about 10-3 or lower then we 
have 

 
( ) ( )

( )
( )

0 1 2

0 1 2

0 1 2

exp
1 | ,

1 exp

exp

r x
P Z S r X x

r x

r x

α α α
α α α

α α α

+ ⋅ + ⋅
= = = =

+ + ⋅ + ⋅

≈ + ⋅ + ⋅

(40) 

where the approximation is the better the lower the 
probability on the left hand side of (40) is. 

A big advantage of model (37) is the interpretability of 
the parameters α1 and α2. Using the approximation in 
(40) one easily obtains 

 
( )
( )

1
1 | 1,

e
1| 0,

P Z S X x
P Z S X x

α= = =
≈

= = =
 (41) 

which of course is much in line with the result (28) 
which has been obtained from model (19) only under 
the additional assumption (A1). However this does not 
seem crucial since we need (A1) at least for an estimate 
of the right hand side of (41) on the basis of accident 
data. Moreover we similarly obtain for any x0, x1 ∈ X 

 
( )
( )

21

0

1| ,
e

1| ,
P Z S r X x
P Z S r X x

α= = =
≈

= = =
 (42) 
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But again, if we intend to estimate the left hand side of 
(42), which equals 

 

01

0 1

01

0 1

0 01

1 0 1

1

0

( )( 1 )
( 1 ) ( )

( )( 1 )
( 1 ) ( )

( 0 ) ( )( 0 )
( 0 ) ( 0 ) ( )

( 1 )
( 1 )

P S r X xP Z S r X x
P Z S r X x P S r X x

P S r X xP Z S r X x
P Z S r X x P S r X x

P Z X x P X xP Z X x
P Z X x P Z X x P X x

P Z S r X x
P Z S r X x

= , == , = , =
⋅

= , = , = = , =
= | == , = , =

= ⋅
= , = , = = | =

= | = == | =
⋅ ⋅ ⋅

= | = = | = =
= , = , =

= ⋅
= , = , =

0

1

1

0

( 0 )
( 0 )

( 0 )
by A1

( 0 )

P Z S r X x
P Z S r X x

P Z X x
P Z X x

= , = , =
= , = , =

= | =
⋅ ,

= | =

(43) 

and therewith 

 

2 1

0

0 1

1 0

( 1 )
( 1 )

( 0 ) ( 0 )
( 0 ) ( 0 )

P Z S r X xe
P Z S r X x

P Z S r X x P Z X x
P Z S r X x P Z X x

α = , = , =
≈

= , = , =
= , = , = = | =

⋅ ⋅
= , = , = = | =

 (44) 

We need a kind of assumption (A2) in order to have that 
the last factor in the equation above is know (e.g. equal 
to one). Note that the first two ratios easily can be 
estimated from accident data. Since it has been argued 
that assumption (A2) hardly is justifiable, we run into 
exactly the same problem following both ways of 
modeling. Here within the estimation of 2α , the term 
P(Z=0|X=x1)/P(Z=0|X=x0) occurs which causes 
problems and in the modeling following assumption 
(19) exactly the same term causes difficulties in the 
interpretation of the parameter β2, cf. (31). 

Summarizing one can say that there are no big 
differences between the two modelings (19) and (37). 
The difficulties demanding for some further 
assumptions are nearly the same. Only the estimation 
procedures within the preceding section seem to be 
more standard since it is a modeling of the actual data 
and therefore usual statistical software packages likes 
SPSS, SAS or R can be used to compute parameter 
estimates. This is the reason why the modeling and 
results of the preceding section are recommended to be 
used. 

SIMULATED DATA EXAMPLE – DISCUSSION 

In the simulated data example section we introduced an 
example with simulated data, where the a priori known 
effectiveness of ESC was tried to be computed with a 

logistic regression. Two different scenarios were 
considered. 

Scenario I (cf. Table 6) rather accurately resembled the 
underlying exposure distribution (cf. Table 4) according 
to equipment with ESC and gender of the driver. 
Scenario II (cf. Table 7) accurately resembled the ESC-
equipment distribution within the two gender groups 
(compare the distribution within the columns of Tables 
4 and 7) but the probability of suffering a neutral 
accident varies with the gender of the driver. 
Summarizing one can say that the data according to 
scenario I fulfilled the requirements given in 
assumptions (A1) and (A2) and the data according to 
scenario II only fulfilled (A1) but not (A2). Both 
scenarios I and II do not fulfill (A3).The results of the 
logistic regression were: 

 0 1 2

0 1 2

ˆ ˆ ˆ0.362 0.341 0.495
ˆ ˆ ˆ0.010 0.341 0.640

I I I

II II II

β β β

β β β

= − = − = +

= − = − = −
 (45) 

compared to the a priori given model parameters 

 0 1 25 0.35 0.5I I Iβ β β= − = − = +  (46) 

The estimated coefficients 1̂
Iβ  and 2

ˆ Iβ  perfectly match 
the underlying situation, cf. (46). However the estimator 

0
ˆ Iβ  is not consistent, which was already discussed in the 

section containing the real-world accident data example. 

The estimated coefficient 1̂
IIβ  still works rather well, 

but 2
ˆ IIβ  does not.  

Here one has to recall that the sufficient condition for 
the reliability of the estimator 2

ˆ IIβ  is that P(Z=0|X=x) is 
independent of x (cf. assumption (A2)). This is 
obviously the case in scenario I but not in scenario II as 
can be seen when looking for the two scenarios at the 
ratio P(Z=0|X=1)/P(Z=0|X=0): 

 ( 0 | 1) 1
( 0 | 0)

I

I

P Z X
P Z X

= = =
= =

 (47) 

and 

 ( 0 | 1) 3.1
( 0 | 0)

II

II

P Z X
P Z X

= = ≈
= =

 (48) 

The two different scenarios demonstrate that the 
effectiveness of the safety function reliably can be 
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estimated from accident data but that one has to be 
cautious with the estimators of the coefficients of the 
confounding variables. 

Summarizing one can say that the effectiveness of a 
safety function reliably can be estimated in praxis, but 
that the influence of a confounder can hardly be 
quantified in general. Nevertheless it is rather essential 
to include relevant confounders in the investigation in 
order to quantify the (pure) effectiveness of a safety 
function correctly. 

CONCLUSIONS 

We have studied two different approaches of logistic 
regression modeling for accident data. It has been 
shown that in both cases and especially for the much 
easier to interpret model (6) standard logistic regression 
software leads not to absolutely exact but to rather 
reasonable estimators for the effectiveness of a safety 
function or safety configuration in vehicles under mild 
assumptions. Thus it has been shown that the 
effectiveness of a safety function or configuration 
reliably can be estimated in praxis. Concerning the 
possible influence of one or more confounders it is 
obtained that the corresponding effects hardly can be 
quantified in general. This is only possible under 
assumptions, which typically are not met in praxis. But 
it is extremely essential to include relevant confounders 
in the logistic regression investigation in order to 
quantify the effectiveness of a safety function correctly. 
This means that the effects of the confounders on the 
accident outcomes (which itself typically cannot be 
quantified!) does not lead to a bias in the quantification 
of the pure effectiveness of the safety function or 
configuration.  

Concerning the presented real world accident data this 
means that we cannot rely on the estimated 
effectiveness of the confounder gender of driver on the 
risk of suffering a skidding accident (recall that we 
obtained from the logistic regression with that 
confounder a surprising negative effectiveness for 
female drivers) but we can rely on the calculated 
effectiveness of 71.6% for the ESC in this situation. 
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