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ABSTRACT 

This paper focuses on tire aging and tire failures due 
to increased chronological tire age, miles driven, and 
harsher environmental conditions. Fundamental 
material failure mechanism is presented first to 
illustrate why tires are aging faster under higher loads 
or temperatures. Then Kaplan-Meier curves and Log-
rank tests are used to compare various risk factors 
that may lead to tire aging. Similarly, Weibull 
analysis is used to predict the tire failure probability 
against tire age or mileage. Finally, Cox proportional 
hazard model is utilized to explore the tire aging 
relative risk with statistical significances. It is found 
that greater chronological tire age, higher mileage, 
initial tire loads, and manufacturing characteristics or 
tire types all contribute to tire aging or failures.  

INTRODUCTION 

While crash data such as the National Motor Vehicle 
Crash Causation Study (NMVCCS) and Fatality 
Analysis Reporting System (FARS) indicate that tire 
failures contribute to vehicle crashes and to 
approximately 400 fatalities per year (around 1% of 
total motor vehicle fatalities in US), relatively little is 
known about the risk of tire aging/tire failure due to 
increased chronological tire age, miles driven, and 
harsher environmental conditions (tire aging). This 
paper investigates the various reasons or risks, 
numerically and graphically, that lead to tire failures 
over certain time or mileages, using survival analysis 
or reliability engineering techniques. 
 
The research data used in this paper comes from 
National Highway Traffic Safety Administration 
(NHTSA) Vehicle Research and Test Center 
(VRTC). VRTC has been collecting and analyzing 
in-service tires from the southwest area of US. The 
research background and motivations were earlier 
introduced by MacIsaac and Feve. 1, 2 Phoenix, 
Arizona was selected for the tire collection site due to 
its high average ambient temperatures and large  

 
 
 
 
population. It is believed, from earlier tests 1, 2, 3, that 
thermo-oxidative degradation within the tires is the 
main risk factor that leads to tire aging, and that this 
thermo-oxidative degradation rate is proportional to 
the temperature.  
 
Earlier work at VRTC provided rich data for this 
current research. 3 There are four phases of this 
ongoing tire aging program at VRTC 2, 3: Phase one 
of the project consisted of the engineering analysis of 
six different tire models collected from on-vehicle 
service in Phoenix during March to April 2003. From 
the point of view of reliability and test validation, 
250 collected tires of six different tire models were 
studied to provide details about their material 
properties and degradations. The results were then 
compared against 82 new, unused, same versions of 
the tire models to quantify the amount of degradation 
in each measured property. The results of phase one 
provided some insight of service-related tire 
degradation, and can be served as the real-world 
‘baseline’ reference for the future laboratory-based 
tire test. 
 
One typical reliability method, so called step stress 
test, or accelerated test, was performed for each tire 
at VRTC. Fundamental fatigue theory of materials is 
used as the guideline, and the test loads, or speeds 
were gradually increased, step-by-step, which were 
then associated with increased mechanical stress and 
higher temperatures within the tires under test. 
Accelerated tests are normally done by means of 
dynamic or vibration test, and by thermal chamber or 
oven test. Figure 1 shows one of such road-wheel 
dynamic test setup used in the VRTC research 2. The 
experimental data patterns are compared to verify the 
effects of some possible tire relative risk factors, 
especially, greater tire chronological age, high 
mileage, initial tire load, and tire types or 
manufacturing characteristics.  
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Figure 1: Tire Aging Roadwheel Test Used by 
VRTC 2 
 
For phase two testing carried out by VRTC 
researchers, a thermal oven (Figure 2) was utilized, 
and this thermal test can realistically simulate the tire 
aging process, with the oven internal temperature 
varying from low to high, for instance, 55-70oC 
degrees for a period of 3-12 weeks 2. It is observed, 
from repeated experiments, that only the oven 
thermal test during Phase two could replicate the tire 
material properties of the six Phoenix retrieved tire 
models 2.  
 
Phase three and Phase four testing, proposed by 
VRTC, further validated the oven test results and 
model parameters derived from Phase two test based 
on the accelerated test theory. This paper will not 
address the details of Phase three and Phase four 
testing, but the theoretical analysis of this paper can 
be a useful hint. 
 
More detailed statistical analyses are done in this 
paper compared with earlier Phase one work, two 
main experimental data sets derived from Phase one 
test  at VRTC are used for the survival analysis in 
this study:  the first dataset, ‘Step Load’, contains 
data from the stepped-up load road-wheel durability 
test performed on 127 unique tires (with no repeated 
tests). The second main dataset, ‘Step Speed’, 
contains data from the stepped-up speed road-wheel 
durability test performed on 95 unique tires (no 
repeated tests). Both step stress tests, either step load 
or step speed, were done to tire failures with 
associated higher stress, from each step of either 
higher load or faster speed. The main outcome 
variables of the above two data sets are time to 

failure (hours), mileage at failure (kilometers), and 
millions of cycles at failure. Some continuous data, 
such as tire age or mileage, are also categorized if 
needed in the modeling for the purpose of group 
comparison.  
 

 
 
Figure 2: Oven Thermal Test to Simulate Tire 
Aging Used by VRTC 2  
 
The objectives of this research are listed as follows: 
 

• Simply asking why tires fail, especially why 
tires fail much faster in hotter regions like 
Phoenix. Fundamental failure mechanisms, 
related to temperature and dynamic loads, 
are introduced first.  

• Comparing the tire survival or failure 
probabilities of various factors leading to 
tire aging or failures, these factors are tire 
age, tire mileage, tire types and others, that 
are examined by paired comparison using 
Kaplan-Meier curves and Log-rank test.  

• Predicting tire aging and failure probability 
using Weibull failure probability plots. 

• Comparing the relative risks or hazard ratios 
of various factors and their statistical 
significances with p-values using Cox 
Proportional Hazard model.  

• Providing some hints for future tire 
accelerated tests based on real-world data, 
failure theory of thermal and dynamic loads, 
and survival analysis.  
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EXPLORE TIRE AGING FROM A 
PERSPECTIVE OF AN ACCELERATED 
TEST  

Tires fail because of high stress from a point of view 
of mechanical and reliability engineering. Stress-
Cycle relationship or ‘S-N curve’ is used here to 
explain the tire failures, the tire failure happens when 
the following condition, Eq.(1), is met 6 – 
 

 
 
Figure 3: Stress-Life Curve (S-N Curve) 
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Where ni is the test cycles performed at stress Si while 
Ni is the maximum cycles before failure at stress Si. 
Mechanical stresses in tires are mainly from two 
sources: stress caused by dynamic loads (for 
example, driving at high speeds), and stress caused 
by high temperature (for instance, driving in Phoenix 
during the summer or tire testing in a hot oven, 
Figure 2).   
 
The tire aging can be much accelerated if used at a 
higher temperature than at a lower one. Accelerated 
temperature stress is described by an accelerated 
factor, or, AF thermal, as following 6 (page 472-474) – 
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In Eqs. (2-3), temp.oK (absolute temperature) =  
(temp.oC + 273.15), and  ‘Ea‘ is the activation energy 
in electron volts (eV). ‘TDF’ is defined as 
‘Temperature Differential Factor’ from the Arrhenius 
Time-Acceleration Model. 6 
  

One example using Eqs. (2-3) is presented here -   if a 
tire is exposed at a higher oven temperature of 65oC 
(or temp.oK high = 65 + 273.15 =338.15), compared to 
being tested at a lower 50oC (or temp.oK low= 50 + 
273.15 = 323.15), TDF=1.59 from above Eq.(3), if 
‘Ea‘ is related to material and assumed to be 1.2eV 
(the proper ‘Ea‘ value can be obtained only after 
careful study of tire material), then AF thermal = 
exp(1.2x1.59)=6.76 from Eq. (2). The interpretation 
of this numerical example is that exposure of a tire to 
a higher temperature of 65oC for one hour is 
equivalent to almost 6.76 hours at a lower 
temperature of 50oC in the thermal oven, assuming 
other test conditions remain the same. 
 
Like oven thermal accelerated test, the tire aging can 
also be much accelerated if used under higher 
dynamic loads than the lower one, such as step speed 
test. Dynamic accelerated factor can be obtained by 
the following formula, similarly 6, 7 - 
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Where highG
 
is the higher dynamic load that results 

in shorter test time, Thigh, and lowG  is a lower 
dynamic load that leads to longer test time, Tlow (see 
S-N curve  of Figure 3) 6. lowG  or highG  is dynamic 
or vibration power spectral density (PSD) related to 
driving speed with a unit of g2/hz, while ‘m’ is a 
constant relate to tire materials and S-N curve 
(normally between 2.5 to 6). 6  However, this short 
paper will not address detailed effects of dynamic 
loads, tire materials and tire structures on the tire 
aging.  
 
One example using Eqs. (4-5) is shown here - if lowG  

=0.04 g2/hz, and highG  =0.06 g2/hz, assuming ‘m’=4, 
then AF dynamic = (0.06/0.04)4 = 5.06 (times). This 
example implies that a tire tested at a 50% higher 
dynamic level of 0.06g2/hz for one hour is equivalent 
to almost 5 hours if tested at a lower level of 0.04 
g2/hz. 
 

If both thermal and dynamic accelerated factors are 
considered, then the total accelerated test factor is 6 –     

       AF total = AF thermal  x AF dynamic                      (6) 

Eq (6) indicates that tires used under both higher 
temperature and higher dynamic loads, as two 
examples above, will have a total accelerated factor 
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of AF total = AF thermal x AF dynamic = 6.76 x 5.06 = 34.2 
(times). We can interpret this approximately - one 
day fast driving (assuming  dynamic loads 50% 
higher) in hot Phoenix (assuming more than 15oC 
degrees hotter) is ‘almost equivalent to’ one month 
normal speed driving in cool Seattle. Again, the 
different assumptions of material related constants of 
‘Ea‘ and ‘m’ in Eq.(2) and Eq.(4) can lead to different 
acceleration factors. The actual AF total might be much 
smaller than the value in this illustrative example. 

 

COMPARING TIRE RELATIVE RISKS 
USING KAPLAN-MEIER CURVES  

One important variable used for survival analysis is 
time, for instance, the test time until failure of a tire 
in the laboratory, or years of tires being used in the 
field, or the treatment time of a patient enrolled into a 
clinical trial 8. In this paper, tire age is represented by 
the variable “DOT Age”, which was determined by 
subtracting the build date in the DOT code from the 
date the tire was collected from service. This was 
considered a more accurate measure of tire age 3, 9. 
Further, DOT Age (Year) is defined as (collection 
date - DOT Middle week Date) *(1/365.25). 
 
The estimated mileage of the tire is represented by 
the variable “DOT Estimated Mileage”.  The value of 
this variable is zero miles for new tires, actual vehicle 
odometer mileage for original equipment 
manufacturer (OEM) tires. For replacement tires, 
DOT Estimated Mileage is defined as (Vehicle 
Mileage/Vehicle Age)*Tire Age. 
 
It is of great interest to observe the tire failure, or 
survival probability varying over a test time. One of 
the most useful tools to compare the survival 
probability over time is a method proposed by 
Kaplan and Meier 4. The Kaplan-Meier survival 
curve is described by the following formula: 
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Where ‘di ‘ is ‘deceased’ subject, or failure tires,  and 
‘Si ‘ is the ‘survivor’ subject or tires still under 
testing, and ‘ni ‘ is total subject number (total tires) in 
the study at the study moment. 
 
The Log-Rank test, used to compare the Kaplan-Meir 
curves and statistical significance with p-value, is 
shown as follows 4, 8   
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Where ‘Oi‘ is the ‘observed’ while ‘Ei‘ is the 
‘expected’ values, and Vi is the variance. The Log-
Rank test is similar to Chi-Square test. The survival 
analysis is done using SAS Procedure of ‘LifeTest’ 11 
and the Kaplan-Meier plots (or K-M Curves) are 
done using open source package R library of 
‘Survival’ (www.r-project.org). 
 
There are several research questions related to tire 
aging to be asked, some are listed as follows – 
 
• Are greater chronological age tires prone to fail 

more easily?  
• Will tires with higher mileages fail sooner? (Or 

alternatively, what is the combined effect of the 
tire age and mileage on aging if using a ‘Service 
Factor’ that correlates with tire age and mileage, 
see details on page 7)  

• Do different tire types have different risks? 
• Are tires located at front or rear associated with 

different Risks?  
 

The following results, in the format of graphics, are 
several typical hypothesis questions that are studied 
using Kaplan-Meier curves, one by one. 
 
CASE STUDIES 

  
- Hypothesis Question One: Do Older Tires Have 

the Same Failure Rates as Newer Tires? 
 

The engineering tests and experimental data suggest 
that tires with greater chronological age may be 
failing earlier than the new ones. Kaplan-Meier test 
and Log rank test were performed on ‘step load’ data 
set, and the following Figure 4 compares the survival 
rate over time between the older and newer tires.  
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Figure 4 Survival Plot Comparing Older (dotted-
line: >=5 years) and New Tires  
 
The vertical axis of the above Figure 4 is the survival 
probability (0 to 1.0, or, 0-100%) and the horizontal 
axis is tire test time (0 to failure time, hours). 
 
The results from Figure 4 indicate that there is a 
statistically significant difference (p-value=0.03 from 
Log rank test) between newer tires and older tires 
(>=5 years old) that failed much sooner from ‘step 
load’ data.  
 
The same Kaplan-Meier test is also applied to ‘step 
speed’ data, and Figure 5 below indicates the same 
trend with ‘step speed’ data as Figure 4.. 

 
Figure 5 Survival Plots Comparing New and Old 
Tires (dotted-line)  
 

 
- Hypothesis Question Two: Will High Mileage 

Tires Fail the Same as Lower Mileage Tires? 

 
Figure 6 Survival Plots Comparing Low and High 
Mileage Tires (dotted-line: mileage<10,000) 
 
The results from the above Figure 6 (using ‘Step 
Load’ data) indicate that there is a statistically 
significant difference between lower mileage tires 
(red curve) and higher mileage tires (p-value <5%). 
 
- Hypothesis Question Three: Do Different Type 

Tires Have Same Failure Risks? 

 
Figure 7 Survival Plots Comparing Various Tire 
Types  
 
Figure 7 indicates (using ‘Step Load’ data) that there 
are significant differences among various tire types, 
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especially between best survival one (Type C, blue) 
vs. worst survival one (Type E, black). 
 
- Hypothesis Question Four: Do Tires with 

Different Positions Have Similar Failure Risks? 

 
Figure 8 Survival Plots Comparing Positions 
(front/rear) 
 
Figure 8 (from step load data) indicates a non-
significant difference between the tires with different 
positions, ‘front’ vs. ‘rear’ position (p-value >10% 
from log-rank test).   
 
More similar K-M curves also verify the significant 
effect of initial load although sample size is small. 
The effect of ‘speed at failure’ is also explored, and 
the results are not so statistically significant enough 
(p-value >0.05) if the speed is divided into two 
groups only (under, or above 170 km/hour), however, 
the speed can be divided into 3 or 4 groups later with 
a larger sample size, which may result in the greater 
aging differences between a very high speed group 
(with a higher relative risk) and a very low speed 
group. Some other parameters of tires, related to tire 
statuses, materials and structure, can also be explored 
in the similar procedure as above. 
    

DISPLAY TIRE FAILURE PROBABILITY 
USING WEIBULL PLOT 

The tire failure probability over test time, F(t), can be 
expressed by the following Eq. (9)  in Weibull model: 

βα )/(1)( tetF −−=                (9) 

Or, equivalently it can be visualized by the following 
‘linear’ transformation, as Eq. (10): 6, 8 

 

    )log()log())(log(log( αββ −=− ttS      (10)                               
 
In the above Eq.(10), S(t) is survival function, which 
can be estimated from the Kaplan-Meier curve 
discussed earlier. Note S(t) = 1-F(t), and F(t) of Eq. 
(9) is the accumulation of failure probability as time 
increases. Weibull failure probability plot from Eq. 
(10) can be visualized as a ‘linear’ plot described by 
‘Y=βX+Constant’, where vertical ‘Y’=log(-log(S(t)), 
‘X’=log(t), and ‘Constant’=-βlog(α). ‘β’ is regarded 
as the ‘Slope’ of the linear plot, or ‘Shape’ parameter, 
and ‘α’ is a ‘Scale’ parameter and is related to the 
intercept of the linear plot.  
 
The following Figure 9 indicates that accumulation of 
tire failure probability increases with tire ages (step 
load data).  
 

 
β =2.6 (‘shape’), α =1.36 (‘scale’) 

Figure 9 Failure Probability vs. Tire Age  
 
 
The similar plot against mileage (Fig. 10 as below, 
using step speed data) indicates that accumulation 
failure probability also increases with tire mileages. 
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β =1.26 (‘shape’), α =45451 (‘scale’) 

Figure 10 Failure Probability vs. Tire Mileage  
 
The following Tables 1-2 provide more results of 
slope (β) and scale (α) parameters, from additional 
Weibull modeling using different data sets. SAS 
Procedure of ‘LifeReg’ is used for Weibull analysis 
11. 
 
Table 1:  Weibull Slope and Scale Parameters 

(Step Load data) 
parameter Failure  vs      

Tire age 
Failure  vs 
Mileage 

β (slope/shape) 2.6 1.37 
α  (scale) 1.36 41667 
99% failure @6.5 yrs @110,000km 

 
Table 2:  Weibull Slope and Scale Parameters 
  (Step Speed Data) 

parameter Failure  vs      
Tire age 

Failure  vs 
Mileage 

β (slope/shape) 1.17 1.26 
α  (scale) 2.46 45451 
99% failure @7 yrs @105,000km 

 

RELATIVE RISKS OF TIRE AGING BY 
COX PROPORTIONAL HAZARD MODEL  

It is of interest to analyze the relative effect of aging, 
for example, older tires vs. the newer tires. Cox 
Proportional Hazard model has been very popular in 

modeling censor data and analyzing the relative risk.  
The mathematical form is simply as follows, 5   

 

)...exp(
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ββββ ++++=         (11)
 

 
Where ‘ho‘ is the hazard at base time while ‘h(t)’ is 
the hazard at any given time, X1, X2, X3, …, Xi  are 
the possible risk factors of tire aging, such as tire age, 
mileage, tire types, tire status (Original, 
Replacement, or New, ORN) , tire position,…etc.,  
β1, β2, …βi are regression parameter associated with 
the possible risk factors, and especially ‘exp(βi)’ can 
be regarded as the relative hazard ratio associated to 
the risk factor of Xi  when Xi is modeled as 
categorical data. In Eq. (11), the combined risk factor 
that correlates with tire age and mileage, ‘Service 
Factor’ 3, can also be considered, if tire age and 
mileage are not used simultaneously while assuming 
the possible correlation, or collinearity between the 
tire age and mileage, although the interpretation of 
‘Service Factor’ is more indirect while ‘tire age’ and 
‘mileage’ tend to be direct.     
 
The following tables are obtained with SAS 
Procedure of ‘PHReg’.11 Table 3 comes from a 
modeling of ‘step-load’ data, and Table 4 comes from 
modeling ‘step speed’ data. Relatively small sample 
size makes it difficult to include multiple variables in 
Cox model. 
                                                                  
    Table 3:  Cox Modeling of Hazard Ratios  

Factor p-value Hazard ratio 
Tire Age 0.03 0.78 
Mileage 0.02 1.46 
position 0.24 1.20 

 
          Table 4:  Cox Modeling of Hazard Ratios  

Factor   p-value Hazard ratio 
Tire Age 0.42 1.12 
Status- ORN 0.04 0.66 
Initial Loads 0.34 0.71 
Mileage 0.20 1.32 

 
One simple interpretation about ‘Mileage’ factor of 
Table 3: tires in a higher mileage group (20000 km 
vs. 10000 km group, for instance) have the aging risk 
1.46 times (or 46% higher) compared with lower 
mileage group tires, with a significant p-value of 2%. 
Relatively small samples make it more difficult for 
Cox model with multiple risk factors.   
     
Conditional probability of each risk predictor, Xi 
(such as tire age, mileage), or weight of each 
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predictor can be obtained from regression parameters 
and is as follows 5, 8 – 
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The ‘partial likelihood function’, ℓ, is expressed as 
the product of all ‘Conditional Probability  of (Xi)’as 
the following formula  that is similar to “Matched 
Case-Control” studies 5, 8 – 
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temptypeposloadmileageage pppppp=  
The tires are aging or failing faster if the above 
partial likelihood function ,ℓ, reached the maximum 
value, or conditional probability of each risk 
conditional probability, page, pmileage, .., reaches a 
maximum value, simultaneously. 

Three analytical methods used in this paper: Kaplan-
Meier survival probability S(t) plots, Weibull failure 
probability F(t) Plots, and Cox Proportional Hazard, 
h(t), have the internal links to each other (as shown 
by Figure 11), and three approaches provide similar 
results of tire aging trends, and each model gives a 
point of view from different perspective. Some 
researchers are more interested in product failure 
rates from Weibull model, F(t), and the others may 
pay more attentions to survival rates over time from 
Kaplan-Meier curve, S(t),  and relative hazard ratios, 
h1(t)/h2(t), of various risk factors. Cox model studies 
the relative risks clearly as logistic model, and is a 
popular tool modeling reliability time data. 8 

 
 
 
 
 
 
 
 
 

 

 
 
 
Figure 11 Linking Three Survival Models  

CONCLUSIONS 

- Greater chronological age tires are aging or 
failing faster than new tires, especially when 
tires older than five years are compared with 
new tires. 

- Tires with higher mileages have higher aging 
risks.  

- Different tire types or manufacturing 
characteristics lead to different aging risks.  
Also, tires with higher initial loads are prone to 
fail earlier.  

- However, tires located at either front or rear 
vehicle positions have similar failure rates. 

- Three analytical models discussed here, 
Kaplan-Meier survival curves, Weibull failure 
probability plots, and Cox Proportional Hazard 
Model, have the internal links to each other, and 
provide similar results. 

- The statistical modeling of two data sets, step 
load and step speed, may provide different 
trends or statistical significances for certain 
parameters, and larger sample sizes may help 
multiple variable modeling. Furthermore, the 
tires studied are from the warmer Arizona area, 
and may have different characteristics from the 
tires of other areas.  
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