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ABSTRACT 
 
This paper presents a probabilistic vehicle states prediction 
algorithm by using multi-sensor fusion. The system inputs 
come in two main varieties: 1) vehicle sensor signal, such 
as steering angle, longitudinal velocity, longitudinal 
acceleration and yaw rate and 2) vision sensor signal, such 
as curvature, slope and distance to lane mark. From these 
inputs, the algorithm presents the time series prediction of 
future vehicle states and the corresponding covariance 
matrixes for the pre-defined future time horizon.  
The probabilistic states prediction algorithm consists of two 
sequential parts. The first part is the estimation part which 
contains a vehicle filter which estimates current vehicle 
states and a road filter which approximates the road 
geometry. The second part is prediction part which consists 
of a path following model generating future desired yaw 
rate which acts as a virtual measurement and a vehicle 
predictor which predicts future vehicle states by maximum 
likelihood filtering method. 
The proposed algorithm has been investigated via test data 
based closed loop simulation with Smart Cruise Control 
(SCC) system. Compared to two kind of existing path 
prediction methods; a fixed yaw rate assumption based 
method and a lane keeping assumption based method, it has 
been shown that the states prediction performance can be 
significantly enhanced by the proposed prediction 
algorithm. And this enhancement of prediction 
performance led to capabilities improvement of driver 
assistance functions of SCC by providing accurate 
predictions about the future driving environment. 
 
INTRODUCTION 
 
Recently, numerous Advanced Driver Assistant Systems 
(ADAS) have been developed and commercialized for the 
driver’s safety and handling enhancement. A smart cruise 
control (SCC) system which maintains the safe distance 
from the preceding vehicle has been introduced to the 
market and next-generation SCC which can assist driver in 
obstacle avoidance situation is in progress. And a lane 
keeping assistance system (LKAS) which prevents an 
unintended lane departure and guide a vehicle into the lane 

boundary have been developed. Such systems have been 
identified to enhance road safety effectively through 
numerous field tests [1]. In those systems, a reliable 
prediction for the ego-vehicle’s future states should be 
available for threat assessment and decision-making 
functions. 
The conventional driver assistant systems introduced in the 
market predict the vehicle’s future path based on a fixed 
circular motion assumption, or a fixed steering angle 
assumption [3], [4]. However, this method is not sufficient 
to ensure a correct assignment of the vehicle’s future path 
[2]. The inadequacy of the conventional path prediction 
method causes wrong threat assessment or wrong 
decision-making in the corresponding driver assistant 
system. 
Subsequently, some modifications have been suggested. 
One approach combines a fuzzy rule and finite-state 
machines to capture all possible driving maneuver 
sequences [24]. However, this approach has been evaluated 
only for turn maneuvers. Another approach classifies the 
maneuver type from current vehicle information such as 
turn light, brake pedal, etc. and predicts the future path by 
building various situation models [21]. However, this 
approach has not been evaluated for dynamic maneuver 
situation (e.g. lane change). 
As the various sensors have been introduced to vehicles, 
some additional information such as lane marking, GPS 
based map data have been taken into account. As a part of 
such effort, the vision sensors, which can detect lanes, are 
utilized for driving path prediction based on lane trackers 
[10]. Furthermore, during recent years, digital map 
contribution toward road geometry estimation is broadly 
proposed [2], [11]. However, path prediction method which 
is fully dependent on road geometry still brings a number of 
problems when the vehicle’s motion and the road geometry 
do not coincide (e.g., lane change or overtake situation) or 
the road information do not exact. 
In short, the vehicle motion based path prediction method is 
not suitable for a long term prediction because of 
divergence of prediction error. And the road geometry 
based path prediction method might not perform well in 
dynamic maneuvering situations such as lane change or 
overtake driving. Consequently, two information, the 
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vehicle states and the road, should be fused properly and 
reasonably to make the most out of relative merits of each 
measure. 
To satisfy this requirement of information fusion, there are 
few approaches to propose fusion method and describe its 
validity. One study proposed independent-parallel two 
predictions, current dynamics based and road geometry 
based, and a weighted manner combining method [2]. In 
this method, it gives more weight to the current dynamics 
based prediction at the beginning and reduces the weight in 
a linear sense. However, there is no mathematical 
description about this linear sense weighting fusion 
strategy. Other approaches which learns motion patterns by 
building a motion database have been presented [22], [23]. 
This method, however, has the drawback that many 
trajectories have to be stored in large databases and 
accessed online. Lin et al. [25] presented an approach using 
numerical integration of a linearized two 
degree-of-freedom vehicle handling model. However, it 
assumes constant steering wheel angle and highway speeds 
(80 km/h). Tsogas et al. [26] has defined various maneuver 
states and proposed a transition model from one maneuver 
to another by a state diagram. And Zong et al. [27] combine 
an Artificial Neural Network (ANN) and a Hidden Markov 
chain Model (HMM) in their integrated model to identify 
the driving intention and predict the maneuvering behavior 
of the driver. In these situation-classification based 
approaches, there are problems that every complicate 
situation cannot be predefined. 
From a number of literature reviews, main concern in 
vehicle prediction area at the moment can be summarized 
as a reliable and reasonable sensor-fusion method for the 
path prediction. To the authors’ knowledge, in addition to 
this requirement of sensor-fusion, two more requirements 
have to be concerned. One is that the real time evaluation of 
prediction error. When the prediction algorithm is utilized 
in driver risk monitoring function of various Advanced 
Driver Assistance Systems (ADAS), the evaluation of 
prediction uncertainty is essential to guarantee the 
performance of the assistance system. This cannot take 
place by existing methods because of their deterministic 
prediction process. And the other is the extension of size of 
predicted states. Only just future position, so called ‘future 
path’, is not sufficient enough to define the actual risk of the 
vehicle. Therefore more elements such as yaw angle, yaw 
rate, longitudinal velocity and acceleration, etc. have to be 
predicted reliably. 
To satisfy these requirements of sensor-fusion, states 

extension and uncertainty evaluation, a sensor fusion based 
probabilistic prediction method for holistic vehicle states is 
developed and proposed in this manuscript. The main idea 
of this study is that a prediction problem can be solved as a 
multi-stage of optimal estimation problem if we consider 
the road geometry as the measurement, as the future road 
geometry is exactly same with the current road geometry. 
The algorithm consists of two sequential parts. The first 
part is the estimation part which contains a vehicle filter 
which estimates current vehicle states and a road filter 
which approximates the road geometry. The second part is 
prediction part which consists of a path following model 
generating future desired yaw rate which acts as a virtual 
measurement and a vehicle predictor which predicts future 
vehicle states by maximum likelihood filtering method. 
The proposed algorithm has been investigated via 
closed-loop simulation with Smart Cruise Control systems. 
Compared to existing methods, it has been shown that the 
states prediction performance can be significantly 
enhanced by the proposed prediction algorithm and this 
enhancement of prediction performance led to capabilities 
improvement of driver assistance functions of ADAS by 
providing accurate predictions about the future driving 
environment. 

 
PROBABILISTIC STATES PREDICTION 
 
A probabilistic states prediction algorithm presents the 
quasi-best predicts of ego-vehicle’s potential position and 
corresponding likely ellipses which are covering some 
given finite time horizon. 
The system inputs come in two main varieties: 1) vehicle 
sensor signal, such as steering angle, longitudinal velocity, 
longitudinal acceleration and yaw rate and 2) vision sensor 
signal, such as curvature, slope and distance to lane mark. 
From these inputs, the proposed algorithm produces a 
time-series of predicts for vehicle position and 
corresponding likely ellipses.  
Fig. 1 depicts the procedures of a probabilistic states 
prediction. As shown in the figure, the overall structure of 
this algorithm consists of 2 parts. The first part is the 
estimation part which contains a vehicle filter which 
estimates current vehicle states and a road filter which 
approximates road geometry. The second part is prediction 
part which consists of a path following model generating 
future desired yaw rate which acts as a virtual measurement 
and a vehicle predictor which predicts future vehicle states 
by maximum likelihood filtering method. 

 
Figure1. Architecture of a probabilistic and holistic states prediction 
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Estimation 
 
In the estimation part, the vehicle’s current dynamic states 
and the road geometry are estimated. The yaw acceleration 
and the longitudinal acceleration are very important factors 
to improve the prediction reliability than conventional 
method. However, the value of yaw acceleration is very 
difficult or expensive to measure directly. This value can be 
successfully estimated in real-time using measurements 
such as the steering angle, the yaw rate, the longitudinal 
velocity and the longitudinal acceleration which are 
available from existing vehicle sensors. And in an 
approximation of the road geometry, the road geometry is 
approximated as a 2nd order polynomials in present vehicle 
coordinate. In this approximation, the coefficients of 
polynomials can be calculated from road curvature, road 
slope and vehicle’s lateral distance from the road center line 
and these values can be measured directly by an equipped 
vision sensor. 
 

Vehicle Filter The Kalman filter is used to estimate 
present vehicle states such as longitudinal velocity, yaw 
rate, longitudinal acceleration and yaw acceleration from 
the vehicle sensor signals such as steering angle, yaw rate, 
longitudinal velocity and longitudinal acceleration under 
the assumption of the Gaussian white noise. As 
aforementioned, the state vector x  is defined as following 
in order to represent the driver’s intention and the vehicle’s 
planar behavior:  

 
where v  is the longitudinal velocity, γ  is the yaw rate, a  

is the longitudinal acceleration and γ&  is the yaw 

acceleration. The measurement vector is defined as 
following to reflect the available sensor information.  

 
where fδ  is the front wheel steering angle. Assuming that 

the time derivatives of the longitudinal acceleration and the 
yaw acceleration can be considered as the process noise, the 
process model and measurement model are given by 
following form: 

 

  
where 

 
where tΔ  is the sampling time which taken as 0.1 second in 
this study, zI  is the yaw moment of inertia, fC and rC  are 

the front and rear wheel cornering stiffness, respectively 

and fl  and rl  are the distances from vehicle’s center of 

gravity to front and rear axles. Two elements in 4th row of 
measurement matrix are determined from the bicycle model 
which is most well-known lateral vehicle dynamics model. 
The process noise is assumed to be a white noise with 
associated covariance matrix, W. The measurement noise is 
also assumed to be a white noise with associated covariance, 
V. Note that measurement model, H, is time varying 
because there exist longitudinal velocity in the element of 
the matrix. Therefore, it should be re-calculated at each 
time step. With above process and measurement model, 
vehicle states are recursively estimated by using the 
Kalman filter which is a sequence of time and measurement 
update steps as following specific equations:  

Time update 

 

Measurement update 

 

 

Road Filter Road geometry is the key factor effecting 
on driver’s maneuverings, especially on steering behavior. 
Therefore, in this section, the method to describe the 
forward road geometry using the measurement of the vision 
sensor is discussed. As the first step of the description, the 
road geometry is defined in current vehicle body coordinate 
and approximated as the 2nd order polynomials. And 
secondly, its coefficients are estimated reclusively from the 
vision sensor measurements and prior estimate of vehicle 
states. 
It is common practice to describe the forward road 
geometry by a 2nd order polynomial [7]. The relation 
between the host vehicle and the road center line can be 
described by two factors. One is a relative lateral 
position, ye , and the other is a relative heading angle, eθ . 

This is depicted in Fig. 7. With these two factors, the road 
geometry, which has the curvature radius R, can be 
approximated as following [6]:  

 
where x  is the down range distance and ry  is the lateral 

position of the corresponding road center in current body 
coordinates. As the vehicle drives with velocity v and yaw 
rate γ , the coefficients describing the road geometry 
change according to the motion of the vehicle. The 
discrete-time process model of the road geometry 
coefficients can be written in the following state-space 
form. Details of process modeling will be described in 
section B.1.  
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where 

 
A subscript ‘r’ is used to denote ‘of road geometry states’. 
The vision sensor provides full information of road state 
vector. Likewise with the vehicle states estimation, the 
Kalman filter is used for the estimation of road geometry 
coefficients. Note that the process model Fr is time varying 
because there exist longitudinal velocity in the element of 
the matrix. Therefore, it should be re-calculated at each 
time step by using the best estimate results of the vehicle 
filter. The yaw rate which is the system input of road 
geometry system model also uses the best estimate result of 
the vehicle filter. Hence the covariance of the process noise 
should be well-defined so that can represent the effect of 
the estimate error of the vehicle filter. As the result, road 
geometry coefficients are recursively estimated by using 
the Kalman filter which is a sequence of time and 
measurement update steps as following specific equations:  

Time update 

  

Measurement update 

 
 

Prediction 
 
In the part of prediction, it is assumed that the driver may 
maintain current behavior in the near future and keep the 
lane in the end. To implement this assumption, a path 
following model and a vehicle state predictor keep 
interacting with each other during the prediction processing. 
A path following model generates the desired yaw rate 
which consists of error state feedback term and road 
curvature feedforward term. The feedback and feedforward 
law is determined properly so that it can represent the 
human driver’s yaw behavior on the road. And a vehicle 
state predictor predicts the vehicle’s future potential 
position and its error covariance by linearized Kalman 
filtering with using the path following model based desired 
yaw rate as the virtual measurement.  

 
  Path Following Model The objective of a path 

following model is to develop a yaw control system for 
human-like lane keeping. To achieve this goal, it is useful 
to utilize a dynamic model in which the state variables are 
in terms of position and orientation error with respect to the 
road. The error state is defined in term of fixed coordinate 
under the assumption of traveling with constant 

longitudinal velocity on a road of constant radius. Note that 
the error state is defined in inertial fixed coordinates not in 
body-fixed moving coordinates. By using the definition of 
the road geometry in section A.2, the position error can be 
defined as 

  
where roadw  is the width of the road lane and N is the 

adjusting integer to represent the current lane. For example, 
if the vehicle changes the lane to the left one, N has the 
value of minus one. Under the small slip angle assumption, 
the time derivative of the position error can be defined as 

  
where v  is the longitudinal velocity and θ is the 
orientation. The orientation error and its time derivative can 
be defined as 

  

  
Under the small road slope and small error assumptions, 
above time derivatives of error states can be simplified as 
follows:  

  

  
If the yaw rate dynamics can be approximated as 1st order 
system which has the desired yaw rate as the system input, 
the state space model of tracking error variables is given by 
following equation.  

  
We can see that first and second raw of equation describe 
the road geometry coefficient process model under the 
assumption of fixed road curvature. 

Assume that the human drivers determine the desired 
yaw rate by state feedback plus a feedforward tem that 
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attempts to compensate for the road curvature as following: 

  
Similar to the road curvature, if the feedforward term is 
constant, the steady state is given by 

  
Hence, we can see that the all error states can be made zero 
by appropriate choices of feedback gains and feedforward 
term. For example, the feedback gain can be determined by 
pole placement which is simulating the human driver’s 
behavior characteristics.  Then the feedforward term can be 
calculated directly from above feedback gain and estimated 
road curvature by equation (20).  

 
 

Vehicle Predictor In the prediction of the vehicle’s 
future states, the only measurement available is the road 
geometry described in current body coordinate. As 
aforementioned, under the assumption that the driver may 
maintain current behavior in the near future and keep the 
lane in the end, the path following model based desired yaw 
rate is used as the virtual measurement while the prediction 
process. Consider the future vehicle system as the 
stochastic, multistage process described as following:  

  
where 

   

  
where Np is the length of the pre-defined prediction time 
horizon and a subscript ‘p’ is used to denote ‘predictive’. 
The longitudinal and yaw acceleration are assumed to be 
decayed with some time constants. 
At each time step, as a noisy measurement of the true future 
yaw rate, desired yaw rate is evaluated by path following 
model. Let us suppose the measurement noise is also 
normal distributed, with zero mean. Hence a predictive 
measurement is linearly related to the predictive states by   

  
Then the maximum likelihood predict of the future state is 
given by the following extended Kalman filtering. As an 

example, a predict procedure at 1st future time step is 
depicted in Fig. 3-4.  

Time update 

  

Measurement update 

 
 

Evaluation of Prediction Error Because the proposed 
prediction algorithm is based on stochastic filtering method, 
the covariance of prediction error can be evaluated at each 
time step as shown in equation (24). Furthermore, the 
eigenvalue and eigenvectors of the 2nd leading principal 
minor of Pp determine the likelihood ellipse around 
predictive position [19]. Using the square root of the 
eigenvalues as semi-axes, measured along the eigenvectors, 
we can sketch the 39 percent likelihood ellipse with center 
at most likely predictive position. The 87 percent likelihood 
ellipse is two times the size of the 39 percent ellipse in 
linear dimension and 99 percent is three times. This is 
depicted in Fig. 7. This analysis is very useful to visualize 
and compare the prediction performance in the view of 
accuracy and precision.  
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Figure2. Relationship between the host vehicle and the

road center line 
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Figure3. Time-update-predicted host vehicle states and the 

relative error states with respect to road geometry defined on 
current body coordinate 
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Figure4. Measurement-update-predicted host vehicle states 
where the predicted desired yaw rate to keep the lane is 
defined as virtual measurement 
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TESE DATA BASED CLOSED-LOOP SIMULATION 
WITH SMART CRUISE CONTROL SYSTEM 
 
To validate the applicability of the proposed algorithm and 
to evaluate the performance enhancement induced by the 
algorithm in perception module of Advanced Driver 
Assistance System, simulation study has been conducted by 
using the commercial vehicle software Carsim and 
Matlab/Simulink. As the objective of the simulation is to 
investigate the induced performance enhancement of the 
target selection module in SCC by proposed algorithm 
compared to conventional methods, a scenario is selected as 
a lane change driving situation with presence of target 
vehicle on the new lane. Based on a collected real-road 
driving data, a driving scenario is re-constructed in 
computer simulation. The comparisons with the 
conventional Fixed Yaw Rate Model (FYRM) and Lane 
Keeping Model (LKM) are presented in this section. 
FYRM is the model which predicts the vehicle future states 
under the assumption of fixed current yaw rate and LKM 
based prediction assumed that the driver may keep the 
current lane which has no consideration of vehicle states is 
also applied and compared. 

 

Simulation Environment 
 
A primary target detection performance was evaluated by a 
simulation on an asphalt road in lane change driving 
situation. In the case of the ego-vehicle, a collected test data 
in lane change situation is applied as open-loop inputs. 
Since a simulation was conducted to evaluate target 
detection performance and associated SCC functions, a 
preceding vehicle which drives on the new lane set to keep 
constant velocity and start decelerating with deceleration 
level of 4 m/s2 after the time that the ego vehicle starts its 
lane changing. For simulating the closed loop feedback 
response of the SCC system, the desired longitudinal 
acceleration command from the SCC system has been 
applied and added to the preceding vehicle’s pre-defined 
acceleration profile with negative value. This is equivalent 
with general closed-loop simulation in longitudinal relative 
behavior between both vehicles.  
The description of the simulation is summarized in Fig. 5. 
As shown in the figure, the host vehicle starts its lane 
changing at 6 sec. And at the same time, the virtual 
preceding vehicle on the new lane is set to start decelerating 
by open-loop acceleration profile as shown in Fig. 5-(g). 
The perception module of SCC system which is appointed 
to do path prediction is replaced by each conventional and 
proposed prediction algorithm and comparative analysis is 
conducted in the view of the performance of SCC. 
 

Simulation Results 
 

The simulation results are given in Fig. 6-9. The results 
have shown the some important performance difference 
and corresponding improvement of safety and convenience 
functions. In case of the FYRM based simulation which is 
denoted by dotted blue line, we can see that target loss has 

occurred frequently as shown in Fig. 8-(b). The first target 
loss is caused by the miss-predicted path which veers off to 
the lane change direction as depicted in Fig. 6-(b). And the 
second target loss is caused by miss-predicted path which 
veers off to the lane correct direction which is depicted in 
Fig. 7-(b). Because of these two times of target loss, SCC 
system with FYRM based prediction module cannot 
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(a) Structure of the simulation 
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(b) Test data of the yaw rate of the host vehicle 
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(c) Test Data of the road curvature 
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(d) Test Data of the relative road slope to host vehicle 

0 2 4 6 8 10 12 14 16
-3

-2

-1

0

1

2

Time [sec]

D
is

ta
nc

e 
to

 R
oa

d 
C

en
te

rl
in

e 
[m

]

 
(e) Test Data of the distance to road centerline of host 

vehicle 
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(f) Open-loop acceleration profile of preceding vehicle 

Figure5. Closed loop simulation environment based on real 
vehicle test data 
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maintain the safe distance from the preceding vehicle and 
used oddly severe deceleration which may cause the driver 
inconvenience.  
In LKM based case, there is no target loss but target 
detecting delay problem has been shown. The reason of this 
delay problem is that the LKM based path prediction 
method does not change the pursuing lane until the center 
of mass cross the boundary of the lane. Because of this 
target detecting delay problem, SCC system started 
deceleration late and used oddly severe deceleration to 
maintain the safety distance and cause the driver 
inconvenience. Note that in case of LKM, prediction error 
covariance cannot be evaluated because of non-realistic 
trust in path following model.  
At last, in cased of the proposed algorithm, the primary 
target vehicle which drives on the new lane is detected 
without target loss and detecting delay. As a result, the 
starting point of longitudinal deceleration of the 
ego-vehicle is moved forward almost 1 second compared to 
LKM based SCC system and retain more safety distance 
with smaller level of deceleration compared to FYRM 
based SCC system. Therefore it is shown that the control 
performance of the SCC system is enhanced in two 
important viewpoints; the longitudinal collision control 
safety and the convenience of the driver. 

 
CONCLUSION 
 
A novel method for the prediction of the ego-vehicle’s 
states has been presented. This algorithm is developed to 
predict the ego-vehicle’s states accurately and improve the 
performance of perception and risk assessment module in 
Advanced Driver Assistance Systems (ADAS). The 
probabilistic states prediction algorithm consists of two 
sequential parts. The first part is the estimation part which 
contains a vehicle filter which estimates current vehicle 
states and a road filter which approximates the road 
geometry. The second part is prediction part which consists 
of a path following model generating future desired yaw 
rate which acts as a virtual measurement and a vehicle 
predictor which predicts future vehicle states by maximum 
likelihood filtering method. 
The proposed algorithm has been investigated via vehicle 
tests data based closed loop simulation with perception 
module of SCC. It has been shown that the states prediction 
performance can be significantly enhanced by the proposed 
prediction algorithm, especially in curve entry, exit and 
lane change driving situations and the enhancement of 
prediction performance led to capabilities improvement of 
driver assistance functions of ADAS by providing accurate 
predictions about the future driving environment.  
The proposed algorithm can be utilized in perception 
modules of advanced driver assistance systems such as 
Emergency Driving Support (EDS) system, Advanced 
Emergency Braking System (AEBS), side-crash prevention 
system, Advanced Lane Change Assistance (ALCA) 
system and expected to enhance the vehicle safety in 
various driving situations 
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(a) Proposed method based prediction 

(b) Fixed Yaw Rate Model based prediction 

(c) Lane Keeping Model based prediction 
Figure. 7 Comparison of prediction results for 3 second of 

future time between the conventional and proposed method 
while lane correct driving 
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(e) Desired acceleration command of each method 
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(e) Clearance of each method 

5 6 7 8 9 10 11 12 13 14 15

5

10

15

Time [sec]

R
el

at
iv

e 
V

el
oc

it
y 

[m
/s

]

 

 

FYRM

LKM

PFM (proposed)

(e) Relative velocity of each method 
Figure. 9  Comparison of the control results with SCC 
 

(a) Proposed method based prediction 

(b) Fixed Yaw Rate Model based prediction 

(c) Lane Keeping Model based prediction 
Figure. 6 Comparison of prediction results for 3 second of 

future time between the conventional and proposed method 
while lane change driving 
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(a) Target detecting signal with proposed algorithm 
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(b) Target detecting signal with fixed yaw rate model 
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(c) Target detecting signal with lane keeping model 
Figure. 8  Comparison of the target detecting performance 
 


