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ABSTRACT 
 
In an early design phase for vehicle crashworthiness, the use of classical optimization is limited. One reason for this is that 
development of structural components is distributed over different departments. Additionally, crash performance depends 
on several components and their interaction. Common components in vehicle architectures are subject to various load 
cases in multiple vehicles. Thus, the entire vehicle architecture has to be considered during optimization. In order to 
enable distributed development the system needs to be decoupled, which means that a variation in one component does not 
require modifications of other components in order to reach the global structural performance goal. 
The objective of this paper is to introduce a method to define the component-wise force-deformation requirements of 
vehicle architectures for front crash structure design. The force-deformation properties of the components are subject to 
constraints, from which an analytical description of the design space of the vehicle architecture is derived. The optimal 
orthogonal solution space within this design space is identified via optimization process. This results in maximal intervals 
for variations of the component forces over their deformations under the given boundary conditions. The validity of the 
solution space is proven through explicit FE simulation.  
 

INTRODUCTION 

1.1 Load Case (USNCAP) 

In 1978, the U.S. National Highway Traffic Safety Administration (NHTSA) introduced the crash test to evaluate 
the crashworthiness of the vehicles on market. This result is published in the U.S. New Car Assessment Program 
(USNCAP). One of the test scenarios is a vehicle impact against a fixed rigid barrier with 56km/h. Two dummies, 
which are protected by the restrain system, are seated in the front seats. The injury criteria are assessed based on the 
data collected during the crash by the dummies.   
In vehicle crashworthiness design, the system is decomposed into two main sub-systems: vehicle structure system 
and restraint system. The analyse on the vehicle structure response, which is fundamental to the occupant protection, 
is the primary focus in this paper. 

1.2 Structure Design 

The crash relevant components are designed to absorb the kinetic energy of the vehicle by plastic deformation. 
These components usually form several parallel load paths going through the front structure of the vehicle in driving 
direction. During the deformation of the load paths, the acceleration at the B-pillar must not exceed the 
critical value.  The B-pillar acceleration is correlated with the dummy acceleration, which is restricted by the 
injury criteria (Huang, 2002). Furthermore, the compartment deformation is constrained to prevent the 
occupants from crushing and penetration injury. The firewall intrusion is considered as a measurement of the 
severity of the compartment deformation in front crash. In addition to the dummy protection, the number of 
the affected components depending on the crash velocity is considered due to the structural reparability and 
reusability. 
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1.3 The Vehicle Cluster within Architecture 

For economical reasons, the vehicle are desired to share as many components as possible. The vehicles are grouped 
into one cluster if they are coupled in the following ways: 

Direct coupling:   When several vehicles share common components, they are directly coupled. (shown in Figure 1) 

Indirect coupling:   The indirect coupling denotes the situation, in which several vehicles don’t have common 
components. Nevertheless they have common components with the same vehicle(s) as shown in Figure 1. 

 

Figure 1. The coupling relation of a cluster with five vehicles. 

The common components, which are assembled in different vehicles, must fulfill the functional requirements of 
each vehicle respectively. The design of common components is difficult if the mass distribution and feasible 
deformable lengths of the vehicles vary. Therefore, an approach to coordinate the local requirements from all the 
individual vehicle structures into one requirement for the component design should be established. These 
requirements defined in early phase can guide the later component design. 

1.4 Simplified Modeling 

The simplified model can be used to derive the functional requirement of the original structure effectively in the 
whole vehicle design process. 
One prominent approach to simplify the structure is the lumped mass-spring (LMS) model. It was introduced by 
Kamal in the early 1970s. The frontal structure of the vehicle is represented one-dimensionally by masses and 
springs. This model delivers acceptable results seeing that the main features of the structure behavior in the crash are 
captured (Kamal, 1970). However, the characteristics of the springs must be collected from experiment, which limits 
the applicable field of the approach. Based on this, Ni and Song built a new model, in which the springs are 
substituted by shell and beam. This frame structure is analyzed by the finite element simulation to identify its 
behavior in the crash, based on which a study is conducted to define appropriate force-deformation curves for all the 
components (Ni & Song, 1986). Lust established a two-phase approach to study the connection between component 
property and the response of the overall vehicle structure in crash.  In the first phase, the force-deformation curve of 
the component is individually analyzed. The identified force-deformation curve is considered to be scalable 
regarding the wall thickness of the component. In the second phase, the mass-spring model is built to obtain the 
overall structural response (Lust, 1992). Due to the increasing demand on the accuracy of the simplified model in 
prediction, the deviation between static crush test and real dynamic crash load case was put into consideration. Kim 
developed a mass-spring model for a quasi-static load case (Kim, Mijar, & Arora, 2001). 
For the simplified model stated above, if the force-deformation curves of the component are calibrated to achieve 
the overall structural performance goal in crash, in the further component design process, optimizing the component 
to match the predefined force-deformation curve is not plausible. On this account, the concept of solution space was 
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developed by Zimmermann (Zimmermann & von Hoessle, 2013). The simplified model provides intervals for the 
force-deformation curves. The intervals calculated for all the components form the solution space of component 
design. This solution space is applied during component design: if the force-deformation curve of the component 
lies inside the solution space, the entire structure fulfills the expected functional goal. The solution space is 
identified with two approaches: the stochastic approach requires an FE model for the calibration of a load path 
model, which has its limitations in the early phase (Zimmermann & von Hoessle, 2013); the analytical approach 
includes a two-level solution procedure which sometimes over constrains the solution space.  When calculating the 
solution space for vehicle architecture with common components in different vehicles, the analytical approach 
confronts an over determined system and thus delivers no solution space (Fender J. , 2013). 

1.5 Vehicle Architectures 

In order to minimize the development cost of the vehicle, the concept of the vehicle platform is introduced. A 
platform denotes a technical basis, on which various vehicle models can be constructed. The platform is also called 
vehicle architecture. In practice, besides the economical reason, the producers can take more advantage of the 
concept, e.g. less variant in components, efficient innovation, stronger global standardization and diversity in 
product (Gonçalves & Ferreira, 2005). 
The common parts that make up an automotive platform are: chassis, suspension, steering mechanism and drive 
train components (WhyHighEnd.com, 2010). Analogously the platform concept is also applied for the 
corresponding components in Crash. The vehicles, which share the common components in the passive safety 
design, are grouped in one cluster. The solution spaces for the different vehicles with common components are 
identified by the stochastic approach based on a simplified load path model. The common components obtain a 
single functional requirement which fulfills the structural goal in different vehicles respectively.  
 

ANALYTICAL SOLUTION SPACE 

2.1 Analytical Solution Space for Single Vehicle 

     2.1.1 Basic Concepts    The process of the vehicle structure design is divided into several phases. The V-model 
shown in Figure 1 illustrates the detailed division of the phases. In the early phase, the package and platform of the 
new vehicle are decided. Thereby the rough mass distribution and topology are available. The structural parameters 
are thus extracted.  

 
Figure 2. The process of structure crashworthiness design. (Fender J. , 2013) 

Available deformation length:   The available deformation of the front structure is the primary factor for the 
energy absorption. The total deformation length can be derived from the length of the frontal structure, the drive 
type, predefined topology and the firewall intrusion. This information is available and used for crashworthiness 
design in the early phase. 

Mass:   In the USNCAP front crash test, the impact velocity is predefined. Hence the mass of the vehicle determines 
the kinetic energy of the system to be dissipated. For the design of frontal structures, the total mass is divided into 
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two parts. The mass of the rear part of vehicle is concentrated at one point behind the firewall. The mass of the front 
end is distributed over the structure. Each component is attached with a concentrated mass, this simplification is 
proved to maintain the sufficient accuracy (Fender, Duddeck, & Zimmermann, 2014). 

The geometry space and deformation space:   The vehicle structure can be modeled using surrogate elements and 
concentrated mass points. In the symmetric front-crash, since the dominant momentum change happens in the 
driving direction (x direct), only the resistance forces in this direction are taken into consideration. The deformation 
conjugated to the force regarding energy is thus the deformation in x-direction.  The maximal deformable length of 
the component is estimated in the early design phase. When integrated into the structure, the components are 
blocked often by rigid devices in between. In order to predict the actual available deformation of each component, a 
geometry space is first built up. The deformation space, which is significant for kinetics and energy absorption, is 
constructed by trimming the geometry space. Sections are inserted where a mass point or an ending of the 
component are met. The shortest load path is the bottle neck of the feasible deformation of the structure as shown in 
Figure 3.  

 
Figure 3. Geometry space vs. deformation space. 

     2.1.2 Constraints   As discussed in section 1.2, three criteria are defined, in order to describe the performance 
of the structure in crash. In this section, the functional constraints are discussed based on information included in the 
deformation space.  

Critical acceleration:   The acceleration of the vehicle compartment is evaluated section wise in the deformation 
space. Therefore, the critical acceleration gives out the critera on the force levels in components: 
 ܽ௜ = ௔௖௧,௜ܯ௜ܨ ≤ ܽ௖௥௧.௜ (1).  

In which ܨ௜ is the sum of the axial resistant forces of all parallel load paths in section ݅. ܯ௔௖௧,௜ is the sum of the 

masses whose velocities are bigger than zero. This results in a system with ܰ inequalities. ܰ is the number of the 
sections of the system. If the acceleration in each section is smaller than the critical value, the structure fulfills the 
acceleration criterion. 

Firewall intrusion:   The criterion on the maximal firewall intrusion is satisfied if the velocities of all the mass 
point are null, before the feasible deformation is totally used up. In the deformation space, this condition can be 
described thusly: 

In section ݅: 
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 නܨ௜(ݑ)݀ݑ ≥ ௜ଶݒ௔௖௧,௜ܯ12 − ௜ାଵଶݒ௔௖௧,௜ܯ12  (2).  

 
In which, ܨ௜(ݑ) :  is the sum of the axial force from all the components in section ݅ over ݑ ݑ : is the deformed length of section ݅ ܯ௔௖௧,௜: is the active mass of section ݅ ݒ௜: is the velocity of the structure when the section ݅ starts to deform 
The final velocity of the previous section and the initial velocity of the subsequent section are the same. And the 
velocity of the compartment should be zero after the last section in front structure deforms. In consequence, when 
the inequalities are summed up section wise, the terms with the intermediate velocities are eliminated, which yields 
the inequality: 
 ෍ܨ׬௜(ݑ)݀ܯݑ௔௖௧,௜ ≥ ଴ଶ2ேݒ

௜ୀ଴  (3).  

 
If Eq. (3) is fulfilled, the firewall intrusion is restricted. 

The order of deformation:   If the impact velocity is relatively low, it is not necessary to absorb energy by 
collapsing all the components. Moreover, the successive deformation behavior mitigates the dependencies of the 
components. On this account, the order of deformation criterion requires that: 

(ଵݑ)ଵܨ  (ଵݑ)ଵܽܯ− ≤ ଶݑ)ଶܨ = 0) (4).  
 
The indices represent the component 2 locates after component 1 in the same load path. 
Up to here, the three constraints for the force-deformation curve of each component are introduced based on the 
information in deformation space. 
 
     2.1.3 The Concept of Solution Space   One of the basic goals for the passive safety design in the early phase 
is to set up the expected force-deformation characteristic for the components. However this goal is ambitious 
because of the limited available information.  
Zimmermann established an approach to find out a robust, compatible and flexible guideline for the component 
design. The fundamental concept can be explained in an example with a primitive deformation space, shown in 
Figure 4. The three boundary conditions are applied onto the axial resistance force of the components.  The feasible 
field of designs is the triangle, in which the optimal design ܣ is located. The optimum offers not only the lowest 
acceleration but fulfills the firewall intrusion and order of deformation constraints as well. However, this design is 
neither robust nor independent, i.e. If ܨଵ is changed, the design may violate the constraints. ܨଶ must be adjusted 
correspondingly to bring the design back to the feasible field.  
The solution space approach creates in this situation a suitable rectangle (a hypercube in high dimensional space) 
inside the design space. All the designs inside this solution space fulfill the three constraints. In each dimension, the 
level of the resistance forces is restricted by an interval. For a component with several sections, the intervals form a 
corridor for the force-deformation curve of the component.  
Inside the solution space, the change of the resistance force level in one dimension doesn’t lead to constraint 
violations in other dimensions, which means that the change of force level in one component doesn’t require the 
adaption of the others to fulfill the overall structural requirments. 
With the solution space concept, the passive safety design in early phase can be transformed into the problem: 
calculate the solution space of the structure; i.e. identify the corridors for the force-deformation curves of the 
components. In the component design phase, if the force-deformation curve of individual component locates inside 
the corridor, the total structure fulfills the three constraints. 
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Figure 4. Solution space of a structure with two components. (Zimmermann & von Hoessle, 2013) 

2.2 Solution Space for One Cluster within Vehicle Architecture 

If the components have identical length and concentrated mass in the geometry space, these components can in 
principle be defined as common components. However, the commonality is in reality based on more criteria from 
other disciplines. Therefore, the common components are manually pre-defined. 
 
     2.2.1 Construction of the Coupled Deformation Spaces   The common components are marked with the 
same name in the deformation space. The relationships are managed using a mapping. The structure of the mapping 
is shown in Figure 5. 

 
Figure 5. Mapping list of the vehicle relationship in cluster. 

The force-deformation curve of the component is discretized by sections. As a consequence, the common 
components, which share the same corridor, must have the same section discretization. In another words, the section 
division of common components should have identical distances and count. For this reason, the artificial sections are 
inserted into the deformation spaces to synchronize the section division of the common components. For instance, 
three deformation spaces with common components are synchronized in the following way: 
a. Independent construction of the deformation space 
As shown in Figure 6 in step I, the three deformation spaces are built independently for each structure. The building 
process is the same as for single structure – sections are inserted where a mass point or an ending of the component 
are met. 
b. Consecutive synchronization of sections for each component 
The new artificial sections are inserted, so that the common components have the identical section division as shown 
in Figure 6 in step II and III. Since the sections are transversely through all parallel load paths, the parallel 
components are affected as well. This synchronization leads to a finer discretization for the deformation space.  
When the common components have comparable relative spatial positions among structures, the section count for 
the common components converges. Important positions (mass point and ending of component) within the spatial 
range of the common components are eventually marked with section bounds. In the case of a cluster with ܰ 
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vehicles, each has ݌௜  components and ݍ௜ mass points, the synchronization converges before maximal ∑ ௜݌) + ௜)ே௜ୀ଴ݍ  
iterations. 

 
Figure 6. Artificial sections are inserted to synchronize the deformation spaces. 

2.3 Solution Space Identification 

The goal of this solution process is to find the largest possible solution space in the design space, which is described 
by the three constraints. The notations used in the solution process are the following: ܨ௨(௣௣௘௥),௜௝/ܨ௟(௢௪௘௥),௜௝ : the upper and lower boundaries of the force interval in section ݅, load path ݆.  ܯ௜௝ : the value of the mass point at section ݅, on load path ݆. ܯ௔௖௧,௜ : the active mass when the system deforms till section ݅. ݀௜ : the length of the section ݅. ܽ௖௥௧,௜ : the critical acceleration of the section ݅. ݒ଴ : the initial velocity of the vehicle 
 
     2.3.1 Constraints   The upper and lower boundaries of the intervals are the unknowns to be identified in the 
solution process. Suppose that the system has N sections and M load paths. The constraints for an optimization 
problem can be formulated as follows: 
The upper boundaries of force-deformation curves in each component should satisfy the inequalities for critical 
acceleration: 
 ෍ܨ௨,௜௝ெ

௝ୀଵ ≤ ௔௖௧,௜ܯ ∙ ܽ௔௖௧,௜ (5).  

 
The lower boundaries of force-deformation curves in each component should satisfy the equalities Eq. (6) w.r.t. the 
energy absorption criterion: 
 ෍ቌ෍ܨ௟,௜௝ெ

௝ୀଵ ቍ ݀௜ܯ௔௖௧,௜ = ଴ଶ2ேݒ
௜ୀଵ  (6).  

 
The order of deformation between components in the same load path applies constraints between the upper and 
lower boundaries of the intervals. If a component ends at section ݅, the constraint is: 
௨,௜௝ܨ  − ௨,௜௝ெܨ௔௖௧,௜෍ܯ௜௝ܯ

௝ୀଵ ≤   .௟,(௜ାଵ)௝ (7)ܨ

 
These constraints are applied to the intervals of the force-deformation curves for each vehicle structure in the 
cluster. Among the vehicles, extra equalities are needed to ensure the identical corridors for common components. 
For instance, components ܥ஺ and  ܥ஻ are common in deformation spaces ܦ஺ and ܦ஻, which are built from the 
structure of vehicle ܣ and ܤ respectively. ܨ௨,௜௝஺ ௟,௜௝஺ܨ ,  are the upper and lower boundaries of the force intervals for ܥ஺ 
in ܦ஺ with the section set ܫ஺ while ܨ௨,௠௡஻ ௟,௠௡஻ܨ ,  are the boundries of the force interval for ܥ஻ in ܦ஻ with the section 
set ܯ஻. The section set ܫ஺ and ܯ஻ have an offset ߜ, i.e. ܫ஺ = ஻ܯ +  :The commonality requires that .ߜ
௨,௜௝஺ܨ  ≡ ௨,(௜ାఋ)௡஻ܨ 	 , ௟,௜௝஺ܨ ≡ ௟,(௜ାఋ)௡஻ܨ ∀݅ ∈ ஺ܫ ∩ ሼܯ஻ + ሽߜ  (8).  
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     2.3.2 Objective Functions   Under these constraints, the optimal values of the upper and lower boundaries are 
calculated by quadratic programming. The objective function is defined as follows: 

Width of the corridor:   In the application, it is more flexible to design the component with wider corridor for the 
force-deformation curve. Thus, the largest solution space is desired within the design space. The closer the corridor 
boundaries approach to the constraints, the wider the corridors are. In order to maintain the convexity of the 
optimization problem, the objective function is formulated with sum of squares (SoS). 
The widths of the corridor for different components are controlled by a weighting factor. This is practical, when the 
force-deformation behavior of one component is easier to control (e.g. crushing component) than that of another 
component (e.g. buckling component). Thus, the widest corridor is achieved by finding the minimum of Eq. (9). 
 min.					Ψ =෍൦ቌ෍߱௜௝ெ

௝ୀ଴ ቍቌ෍ܨ௨,௜௝ − ௔௖௧,௜ܯ ∙ ܽ௖௥௧,௜ெ
௝ୀ଴ ቍଶ൪ே

௜ୀ଴  (9).  

 
In which ω୧୨ denotes the weighting factor of the corridor segment at section i and load path j . 
Smoothness of the corridor:   If dramatic overshootings exist in the corridor, it is difficult to design the force-
deformation curve of the component to fulfill the corridor. Therefore, the smoothness of the corridor should be tuned 
to reduce the complexity of the engineering work. For component ܥ௞ with ܵ corridor segments, the objective 
function for corridor smoothness is written as: 

 min.					 ߶௞ = 1ܵ − 1෍൫ܨ௠,௜௝ − തெ൯ଶௌܨ
௜ୀଵ  (10).  

 

In which ܨതெ = ଵௌ ∑ ൫ܨ௨,௜௝ + ௟,௜௝൯ܨ 2⁄ௌ௜ୀଵ . Φ is the sum over the objective functions of each corridor. 

Uniform distribution of the corridor widths:   The force-deformation curve to be designed may not fulfill an 
extreme narrow corridor. Therefore, the widths of the corridors should be be as uniform as possible. If the influence 
of the pre-defined weighting factors is eliminated, the objective function is formulated to minimize the variation of 
the corridor widths: 

 min.					 Θ = ܦ1 − 1෍෍ቆܨ௨,௜௝ − ௟,௜௝߱௜௝ܨ − ΔFതതതതቇଶெ
௝ୀଵ

ே
௜ୀଵ  (11).  

 

In which Δܨതതതത = ଵ஽ ∑ ∑ ൫ܨ௨,௜௝ − ௟,௜௝൯ܨ ߱௜௝ൗெ௝ୀଵே௜ୀଵ  , and ܦ is the number of corridor segments. 

As a concequence, the solution process is transferred into a multi-objective optimization problem. The overall 
objective function is built by weighted sum of the sub-objective functions Eq. (9-11): 
 min. 			Σ = Ω୵(୧ୢ୲୦) ⋅ Ψ + Ω௦(௠௢௢௧௛௡௘௦௦) ⋅ Φ + Ωௗ(௜௦௧௥௜௕௨௧௜௢௡) ⋅ Θ (12).  
 
The objective function is formed by SoS and therefore semi-positive definit.The equality and inequality constraints 
are linear. As a result, a unique optimum of this convex problem can be found by interior point method (IPM)  
(Nocedal & Wright, 2006) (Vandenberghe, 2010).  
 
RESULTS 
 
3.1 Solution Space Calculation 
 
The upper and lower boundaries of the force interval in each section and load path are packed into the solution 
vector ݔԦ = ,௟,௜௝ܨ] ,்[௨,௜௝ܨ ݅ ∈ [0, ܰ], ݆ ∈  This solution vector is obtained by solving the quadratic . [ܯ,0]
optimization problem: 
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 min. ԦݔܪԦ்ݔ +   .Ԧ (13)ݔ்ܾ
 
under the equality and inequality constraints. In which ܪ is the Hessian matrix of Σ and ܾ is the first derivative 
of Σ. Tuning the weighting factor of the sub-objective functions leads to different optimal solution spaces as 
shown in Figure 7. 

 
Figure 7. Calculation of the solution space concerning different applications. 

A solution of the cluster is shown in Figure 8, which shows that the common components (marked with red and 
green respectively) integrated in different vehicles are constrained with the identical corridors. For each 
vehicle, the deformation spaces before and after synchronization are shown on the left in Figure 8. 
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Figure 8. Corridor calculation for vehicle cluster. 

 
3.2 Validations of the Component Functional Goals 
 
In order to validate the method, a simplified FE model is constructed. The structure with four thin-wall 
components is crashed against a rigid barrier. The acceleration of the mass at the back of the structure is 
constrained. The solution space of the structure is calculated with the method stated above. In the initial 
design, the force-deformation curve of the last component violates its corridor; the acceleration of the mass 
exceeds the critical value as shown in Figure 9. In order to fulfill the goal of structural design, the component 
is modified (e.g. variation in wall thickness, introduction of beads and holes) to yield a force-deformation 
response which lies inside its corridor. The acceleration goal is subsequently achieved as shown in Figure 9. 
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Figure 9. Component design based on corridors. 

CONCLUSIONS 
 
The solution space of the vehicle cluster is described analytically and identified through the numerical 
optimization. The approach can be used to decouple the design of the components while maintaining the 
commonality of the vehicle architecture. This solution space provides each component an interval for force-
deformation responses. These intervals as the functional goals, compared with a single curve, ensure more 
flexibility for the component design. 
With the solution process established in this work, the features of the solution space can be adjusted by tuning 
the weighting factors in Eq. (12) in order to minimize the effort of the structural optimization in component 
design. 
As a conclusion, this approach can serve the V-model design process by establishing the functional goals for 
individual components within vehicle architecture. 
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