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ABSTRACT 
 
The National Highway Traffic Safety Administration (NHTSA) and the Automotive Coalition for Traffic Safety (ACTS) 
began research in February 2008 to try to find potential in-vehicle approaches to the problem of alcohol-impaired driving.  
Members of ACTS comprise motor vehicle manufacturers representing approximately 99 percent of light vehicle sales in 
the U.S.  This cooperative research partnership, known as the Driver Alcohol Detection System for Safety (DADSS) 
Program, is exploring the feasibility, the potential benefits of, and the public policy challenges associated with a more 
widespread use of non-invasive technology to prevent alcohol-impaired driving. The 2008 cooperative agreement between 
NHTSA and ACTS for Phases I and II outlined a program of research to assess the state of detection technologies that are 
capable of measuring blood alcohol concentration (BAC) or Breath Alcohol Concentration (BrAC) and to support the 
creation and testing of prototypes and subsequent hardware that could be installed in vehicles. This paper will outline the 
technological approaches and program status.  

INTRODUCTION 

Alcohol-impaired driving (defined as driving at or above the legal limit in all states of 0.08 g/dL or 0.08 percent) is 
one of the primary causes of motor vehicle fatalities on U.S. roads every year and in 2011 alone resulted in almost 
10,000 deaths.  There are a variety of countermeasures that have been effective in reducing this excessive toll, many 
of which center around strong laws and visible enforcement.  Separate from these successful countermeasures, the 
National Highway Traffic Safety Administration (NHTSA) and the Automotive Coalition for Traffic Safety (ACTS) 
began research in February 2008 aimed at identifying potential in-vehicle approaches to the problem of alcohol-
impaired driving.  Members of ACTS comprise motor vehicle manufacturers representing approximately 99 percent 
of light vehicle sales in the U.S.  This cooperative research partnership, known as the Driver Alcohol Detection 
System for Safety (DADSS) Program, is exploring the feasibility, the potential benefits of, and the public policy 
challenges associated with a more widespread use of non-invasive technology to prevent alcohol-impaired driving. 
The 2008 cooperative agreement between NHTSA and ACTS (the “Initial Cooperative Agreement”) for Phases I 
and II outlined a program of research to assess the state of detection technologies that are capable of measuring 
blood alcohol concentration (BAC) or Breath Alcohol Concentration (BrAC) and to support the creation and testing 
of prototypes and subsequent hardware that could be installed in vehicles.  

Since the program’s inception it has been clearly understood that for in-vehicle alcohol detection technologies to be 
acceptable for use among drivers, many of whom do not drink and drive, they must be seamless with the driving 
task, they must be non-intrusive, that is, accurate, fast, reliable, durable, and require little or no maintenance.  To 
that end, the DADSS program is developing non-intrusive technologies that could prevent the vehicle from being 
driven when the device registers that the driver’s blood alcohol concentration (BAC) exceeds the legal limit 
(currently 0.08 percent throughout the United States).  

To achieve these challenging technology goals, very stringent performance specifications are required.    These 
specifications have been formally documented in the DADSS Performance Specifications, which provide a template 
to guide the overall research effort.  Another important challenge will be to ensure that the driving public will accept 
in-vehicle alcohol detection technology once it meets the stringent criteria for in-vehicle use.  A parallel effort is 
underway to engage the driving public in discussions about the technologies being researched so that their feedback 
can be incorporated into the DADSS Performance Specifications as early as possible.  The challenges to meet these 
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requirements are considerable, but the potential life-saving benefits are significant.  An analysis of NHTSA’s 
Fatality Analysis Reporting System (FARS) estimates that if driver BACs were no greater than 0.08 percent, 7,082 
of the 10,228 alcohol–impaired road user fatalities occurring in 2010 would have been prevented. 

The research effort that comprised the Initial Cooperative Agreement followed a phased process. The five-year 
Initial Cooperative Agreement began with a comprehensive review of emerging and existing state-of-the-art 
technologies for alcohol detection in order to identify promising technologies.  Phase I, completed in early 2011, 
focused on the creation of proof-of-principle prototypes.  The objective of Phase I was to determine whether there 
were any promising technologies on the horizon.  Three prototypes were delivered and tested at the DADSS 
laboratory that yielded promising results for two of the three technologies.  

The Phase II effort, begun in late 2011 and completed in late 2013, focused on the continued research of the 
technology to narrow gaps in performance against the DADSS Performance Specifications and meet the DADSS 
Performance Specifications within the needs of an in-vehicle environment.   

Phase III and subsequent phases of research – the focus of the current Cooperative Agreement – will permit further 
refinement of the technology and test instruments as well as basic and applied research to understand human 
interaction with the sensors both physiologically and ergonomically – that is how these technologies might operate 
in a vehicle environment.  At the culmination of this Agreement will be a device or devices that will allow a 
determination to be made regarding whether the DADSS technologies can ultimately be commercialized.  If it is 
determined that one or more of these technologies can be commercialized, it is currently anticipated that the private 
sector will engage in additional product development and integration into motor vehicles. 

The purpose of this paper is to outline the technological approaches taken in developing alcohol detection hardware.  
These approaches are founded on a clear understanding of the processes by which alcohol is absorbed into the blood 
stream, distributed within the human body, and eliminated from it.  Not only must technologies under consideration 
quickly and accurately measure BAC, but the medium through which it is measured (e.g., breath, tissue, sweat, etc.) 
must provide a valid and reliable estimation of actual BAC levels.  Alcohol absorption, distribution, and elimination 
measurement is a topic about which much has been written yet some large gaps in our understanding still remain.  
This paper will provide an overview of what is known regarding alcohol measurement via various methods and their 
implications for the decisions about which technologies deserve further study.  The paper also will provide an 
overview of the current performance specifications developed to assess the in-vehicle advanced alcohol detection 
technologies and the rationale for them as well as an overall status of progress made to date. 

ALCOHOL ABSORPTION, DISTRIBUTION, AND ELIMINATION IN HUMANS 

The science of pharmacokinetics is concerned with the ways in which drugs and their metabolites are absorbed, 
distributed, and eliminated from the body (Jones, 2008).  This is separate from pharmacodynamics which is the 
study of the physiological effects of drugs and their actions on the body (Buxton, 2006 see Jones paper).  Ethyl 
alcohol or ethanol, more commonly referred to as alcohol, is only one of a family of organic compounds known as 
alcohols. Ethanol, referred to hereafter as alcohol, is highly soluble in the body’s water, which makes up 50-60 
percent of body weight.  Even though alcohol is a central nervous system depressant, people perceive it as a 
stimulant and in the early stages it can produce feelings of euphoria (Jones, 2008).  With the consumption of larger 
amounts of alcohol, performance and behavior can be impaired resulting in reduced coordination, loss of motor 
control, lack of good judgment, and at very high concentrations (greater than 0.4 g/dL) loss of consciousness and 
death.  Figure 1 portrays schematically the pathways by which alcohol is absorbed into the blood stream, is 
distributed throughout the body, and eliminated from it.   

After ingestion, alcohol enters the stomach where it is partially absorbed through the stomach wall (about 20 
percent), and then to the small intestines where most of the absorption takes place (about 80 percent).  Alcohol is 
then transported to the liver and on to the heart before it is distributed by the arteries throughout all body fluids and 
tissues.  Alcohol easily passes the blood-brain barrier where it affects central nervous system functioning.  The time 
required for reaching equilibrium depends on the blood flow to the various organs and tissues, but over time alcohol 
mixes completely with all the water in the body and reaches into all fluid compartments within the body.   

The characteristics of alcohol’s distribution and elimination can point to potential ways in which BAC can be 
measured.  There are two mechanisms by which alcohol is eliminated from the body, metabolism and excretion.  
The liver is the primary organ responsible for the elimination of alcohol and it is where about 95% of ingested 
alcohol is metabolized.  The remainder of the alcohol, about 2-5 percent, is excreted unchanged wherever water is 
removed from the body; through the skin in sweat, from the lungs in breath, from the eyes in tears and from the 
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kidneys in urine.  As noted above, alcohol distributes completely into all the body’s compartments so alcohol can be 
measured in vivo in bodily tissue.    

 
 Figure 1. Alcohol absorption, distribution and elimination though the body 

Methods used to measure blood alcohol concentration 

For many years the only means to determine BAC was through blood and urine testing.  As early as 1874 it was 
recognized that ingested alcohol can be measured in breath (Jones, 2008), and the smell of alcohol on breath is a 
well-known indication that someone has been drinking.  Accurate measurement of alcohol in expired air has a 
physiological basis.  Under normal lung function there is an efficient gas exchange between blood and gases, thus 
resulting in a close correlation between blood and gas concentrations of alcohol (Hök, 2006).  Furthermore, a recent 
study (Lindberg et al., 2007) has established that the concentration of alcohol in breath is in very close agreement to 
that of alcohol in arterial blood (Figure 2), even though the gold standard for equating breath to blood alcohol is 
venous BAC.   Of note is that arterial BAC is a better indication of brain alcohol and hence impairment than venous 
blood, so BrAC is particularly well suited as a measure of driver impairment.  

 
Figure 2. Pharmacokinetic profile in one subject showing concentrations of alcohol in arterial blood (ABAC), 

venous blood (VBAC) and breath after oral ingestion of 0.6 g of alcohol per kg body weigh 

Dr. Robert Borkenstein is recognized as the inventor of the first system that measured alcohol on a person’s breath.  
In 1954, he invented the first breath testing device, which used chemical oxidation and photometry to measure 
alcohol concentration.  Subsequently physiochemical methods were developed for the measurement of alcohol in 
breath such as gas chromatography, electrochemical oxidation, and infra-red analysis.  Breath testing has flourished 
because it is non-invasive and, in contrast to urine and blood samples that have to be sent away for testing, provides 
on-the-spot results.  As a result most countries have adopted breath testing both for roadside screening and 
evidential purposes to establish BAC.    

In recent years a number of other approaches have been identified that could be used to measure alcohol in 
perspiration (either vapor phase or liquid phase) or from measurements of alcohol in a person’s tissue.  As noted 
below, these techniques have not yet been widely used to measure to measure alcohol concentration.   
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TECHNOLOGICAL APPROACHES 

One of the first tasks of the project team was to perform a comprehensive review of emerging and existing state-of-
the-art technologies for alcohol detection (Ferguson et. al., 2010).  Technology scans were undertaken through 
patent and literature reviews.  Based on these reviews four categories of technologies were identified with potential 
for measuring driver BAC within the vehicle environment:  

1. Electrochemical/Transdermal Systems 

Electrochemical Systems are chemical-reaction-based devices such as transdermal and breath-based systems.  
Alcohol in the presence of a reactant chemical will produce colorimetric changes measured by spectral analysis or a 
semi-conductor sensor.  In fuel cell systems (typically used in current technology –  breath-alcohol ignition 
interlocks), exhaled air containing alcohol passes over platinum electrodes which oxidize the alcohol and produce an 
electrical current; the more alcohol in the air sample, the greater the electrical current.  The electrical current level 
permits accurate calculation of breath alcohol concentration (BrAC) which can be converted to blood alcohol 
concentration (BAC) using a standardized conversion factor. 

2. Tissue Spectrometry Systems 

Tissue Spectrometry Systems allow estimation of BAC by measuring the alcohol concentration in tissue.  This is 
achieved through detection of light absorption at a particular wavelength from a beam of Near-Infrared (NIR) 
reflected from within the subject’s tissue. As classified herein, they are touch-based systems and require skin 
contact.  Variations of tissue spectrometry systems include Michelson, Raman, Fabry-Perot, Laser Diode and Light 
Emitting Diode (LED) based devices.  

3. Distant/Offset Spectrometry Systems 

Distant Spectrometry Systems use an approach that is similar to Tissue Spectrometry, except that no skin contact is 
required. Infrared (IR) is transmitted toward the subject from a source that also has a sensor to receive and analyze 
the reflected and absorbed spectrum to assess alcohol concentration in the subject’s exhaled breath. 

4. Behavioral Systems 

Behavioral Systems detect impaired driving through objective behavioral measures.  These include ocular indices 
such as gaze and eye movement, driving performance measures, as well as other performance measures believed to 
be related to driving performance. 

In addition to the technology scans, a Request for Information (RFI) was published as a means by which the DADSS 
program was first communicated to potential technology developers .  The goal of the RFI was to establish the level 
of interest among technology developers in taking part in the research, the kinds of technologies available, and their 
states of development relevant to in-vehicle applications.  Based on information gleaned during the RFI process, a 
subset of technology companies were selected to receive a Request for Proposal.  Detailed evaluation of the 
proposals that were received resulted in awards to technology companies based on two of the technological 
approaches outlined above; tissue spectroscopy and distant spectroscopy. The electrochemical/transdermal and 
behavioral approaches were not being pursued due their limitations for the DADSS application. 

Current breath-based measurement systems as well as transdermal systems that measure alcohol in vapor or liquid 
phase perspiration, utilize electrochemically-based fuel-cell technology which has several limitations.  Fuel cells 
must be warmed up to breath temperature to meet accuracy requirements, which in cold climates can take several 
minutes to accomplish.  Furthermore, fuel cell alcohol measurements experience drift over time and require 
recalibration within one year or less.  Both of these aspects render fuel cell technologies unsuitable for every-day use 
by the general public.  Transdermal fuel-cell based devices suffer from the same disadvantages; however, there is an 
additional concern due to the long lag time of peak alcohol concentration in sweat versus blood.  Various studies 
have identified the lag times to be on the order of two hours or more and it is not clear how future technological 
approaches to measuring TAC at a point in time can address this fundamental physiological difference.  

Interest in behavioral-based approaches to measuring alcohol impairment dates back to the 1970s when the 
government and industry collaborated on possible vehicle-based measures of impairment (Ferguson et. al., 2010).  
There are a large number of measurable behaviors that have been identified that are affected by alcohol, including 
eye movements, reaction times, and vehicle-based measures of impairment such as lane position variability/lateral 
position, changes in driving speed and speed variability, pedal and steering control, distance from the car in front, 
and delay in motor actions and responses such as braking reaction times.  Researchers have examined the 
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relationship of BAC to changes in these behaviors; however, close correlations between these measures have not yet 
been established.  Another issue is that behavioral task performance may change as a result of a variety of 
impairments, whether from fatigue, illness, alcohol, medications, illegal drugs, or other sources.  Furthermore, in 
order to measure impairment there has to be some measure of “normal” abilities on the specific task that can act as a 
baseline measurement for comparison.  It should be noted that other sources of impairment can result in unsafe 
driving, and research continues to identify those risks and determine potential countermeasures.  However, the 
limitations outlined above would be hard to deal with in an unobtrusive device to measure alcohol.    

PERFORMANCE SPECIFICATIONS 

ACTS developed performance specifications to assess the in-vehicle advanced alcohol detection technologies that 
are being developed.  The specifications are designed to focus the current and future development of relevant 
emerging and existing advanced alcohol detection technologies (Ferguson et. al., 2010).  In addition to requirements 
for a high level of accuracy and very fast time to measurement, the influences of environment, issues related to user 
acceptance, long-term reliability, and system maintenance also will be assessed.  The resulting list of specifications 
with definitions, measurement requirements, and acceptable performance levels are documented in the DADSS 
Subsystem Performance Specification Document.  The accuracy and speed of measurement requirements adopted by 
the DADSS Program are much more stringent than currently available commercial alcohol measurement 
technologies are capable of achieving.  As noted above, the devices would need to be seamless with the driving task 
and not inconvenience drivers.  Translating that to appropriate performance specifications was approached by 
estimating the potential for inconvenience if reliability, accuracy, and time to measurement were set at various 
levels.  Presented below are the processes used to derive them.  

Reliability   Developing an alcohol detection device as original equipment for the vehicle environment brings with 
it special challenges.  Reliability is defined as the ability of a system or component to perform its required functions 
under stated conditions for a specified period of time.  Levels of reliability that are too low would result in an 
unacceptable number of failures to operate the vehicle.  It has been estimated that at the 3σ reliability (sigma - Greek 
letter σ - is used to represent the standard deviation of a statistical population) there could be the potential for 66,800 
defects per million opportunities, where an opportunity is defined as a chance for nonconformance. The accepted 
level of reliability within the industry is 6σ.  The term "six sigma process" comes from the notion that with six 
standard deviations between the process mean and the nearest specification limit, there will be practically no items 
that fail to meet specifications.  In practice, 6σ is equivalent to 99.9997% efficiency.  Processes that operate with 
"six sigma quality" over the short term are assumed to produce long-term defect levels below 3.4 defects per million 
opportunities. 

Accuracy and Precision   Accuracy is defined as the degree of closeness of a measured or calculated quantity to its 
actual (true) value (also referred to as the Systematic Error – SE).  Precision is the degree of mutual agreement 
among a series of individual measurements or values (also referred to as the Standard Deviation – SD).  To limit the 
number of misclassification errors, accuracy and precision must be very high, otherwise drivers may be incorrectly 
classified as being over the threshold (false positives), or below the legal limit (false negatives).  To assure that 
drivers with BACs at or above the legal limit will not be able to drive, while at the same time allowing those below 
the limit to drive unhindered, SE and SD requirements at a BAC of 0.08 g/dL will need to achieve levels of 
0.0003%. See Table 1 for the accuracy (SE) and precision (SD) requirements at other BACs. 

Table 1. DADSS Performance Specifications (% BAC or % BrAC) 

Ethanol 
concentration SE SD 

0.020 0.0010 0.0010 
0.040 0.0010 0.0010 
0.060 0.0007 0.0007 
0.080 0.0003 0.0003 
0.120 0.0010 0.0010 

 

Speed of measurement   Another important performance requirement is that time to measurement be very short.  
Sober drivers should not be inconvenienced each and every time they drive their vehicle by having to wait for the 



Zaouk-6 
 

system to function.  Current breath-based alcohol measurement devices can take 30 seconds or more to provide an 
estimate of BAC.  However, it was determined that the DADSS device should take no longer to provide a 
measurement than the current industry standard time taken to activate the motive power of the vehicle. Thus, the 
subsystem should be capable of providing a reading of the current BAC and communicating the result within 325 
msec.  It should be capable of providing a second reading, if necessary, within 400 msec. 

THE DADSS SUBSYTEMS  

Tissue Spectrometry: Takata-TruTouch Touch-based Subsystem 

Also known as near-infrared (NIR) spectrometry, this is a noninvasive approach that utilizes the near infrared region 
of the electromagnetic spectrum (from about 0.7 μm to 2.5 μm) to measure substances of interest in bodily tissue 
(Ferguson et. al., 2010).  NIR spectroscopy is the science that characterizes the transfer of electromagnetic energy to 
vibrational energy in molecular bonds, referred to as absorption, which occurs when NIR light interacts with matter.  
Most molecules absorb infrared electromagnetic energy in this manner.  The specific structure of a molecule dictates 
the energy levels, and therefore the wavelengths, at which electromagnetic energy will be transferred. As a result, 
the absorbance spectrum of each molecular species is unique.  Better-known applications include use in medical 
diagnosis of blood oxygen and blood sugar, but devices have been developed more recently that can measure 
alcohol in tissue (Ridder et al., 2005).    

Although the entire NIR spectrum spans the wavelengths from 0.7 – 2.5 μm, TruTouch has determined that the 1.25-
2.5 μm portion provides the highest sensitivity and selectivity for alcohol measurement.  The 0.7-1.25 μm portion of 
the NIR is limited by the presence of skin pigments such as melanin that can create large differences among people, 
particularly of different ethnicities.  In contrast, the longer wavelength portion of the NIR, from 1.25-2.5 μm, is 
virtually unaffected by skin pigment (Anderson et al., 1981).  One other advantage of using this part of the spectrum 
is that the alcohol signal in the 1.25-2.5 μm region is hundreds of times stronger than the signal in the 0.7-1.25 μm 
part of the NIR.   

For the 1st generation prototype, as shown in Figure 2, the measurement begins by illuminating the user’s skin with 
NIR light which propagates into the tissue (the skin has to be in contact with the device).  A portion of the light is 
diffusely reflected back to the skin’s surface and collected by an optical touch pad. The light contains information on 
the unique chemical information and tissue structure of the user. This light is analyzed to determine the alcohol 
concentration and, when applicable, verify the identity of the user.  Because of the complex nature of tissue 
composition, the challenge is to measure the concentration of alcohol (sensitivity) while ignoring all the other 
interfering analytes or signals (selectivity). 

 
Figure 2. Touch-based subsystem 1st generation sensor and block diagram 

Currently, the 2nd generation prototype is undergoing a fundamental change in system architecture; namely, a shift 
from a bulky spectrometer engine with moving parts to a fully solid-state sensor. This new approach, shown in 
Figure 3, requires extensive hardware and software research, the aims of which are to transform the touch-based 
sensor to improve suitability for long-term in-vehicle use and to improve the signal to noise ratio for better accuracy, 
precision, and shorter measurement times. The key enabling innovation is the ability to define an optimized subset 
of optical wavelengths which provide a high quality non-invasive alcohol measurement in humans. The 2nd 
generation uses modulated laser diodes to generate 40 unique wavelengths of light for alcohol measurement. The 
necessary laser diode target specifications were derived from an analysis of the human subject system data with 
accurate comparative reference data. The proposed design is also based on a Hadamard laser modulation scheme, a 
multiplexing technique, to improve signal to noise, along with re-design of the electronics, fiber-optical assembly, 
reference, touchpad and software controls to approach the necessary environmental and durability requirements for 
an automotive sensor device.  
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Figure 3. Touch-based subsystem 2nd generation sensor and block diagram 

The focus of the current effort is to validate the new system architecture using 40 single laser packages with the goal 
of acquiring, verifying and integrating the full set of required multi-lasers packages into the 3rd generation benchtop 
system. Based on success of the 3rd generation sensor, the plan is to evolve and integrate into the DADSS research 
vehicle as show in Figure 4.   

  
 Figure 4. Evolution of solid state touch-based DADSS subsystem 

Autoliv Breath–based Subsystem 

Distant spectrometry systems use an approach similar to tissue spectrometry, in that they utilize the mid infrared 
(MIR) region of the electromagnetic spectrum (2.5-25 μm), except that no skin contact is required (Ferguson et. al., 
2010).  Infrared light is transmitted toward the subject from a source that receives and analyzes the reflected and 
absorbed spectrum to assess alcohol concentration in the subject’s exhaled breath.  There are a number of 
approaches under development that aim to remotely analyze alcohol in breath either within the vehicle cabin or 
around the driver’s face without the driver having to provide a deep-lung breath sample.    

As mentioned above, under normal lung function there is an efficient gas exchange between blood and gases, 
resulting in a close correlation between blood and breath alcohol concentrations (Hök, 2006) reflecting the very 
rapid equilibrium kinetics between pulmonary capillary blood and alveolar air (Opdam et al., 1986).  In fact, as seen 
in Figure 2, BrAC measurements (converted to units of BAC) track arterial BACs throughout the blood alcohol time 
curve; only slightly below during the ascending curve, then virtually identical on the descending limb of the BAC 
time curve (Lindberg et al., 2007).    

Current breath-based alcohol measurement techniques require direct access to undiluted deep-lung air, and therefore 
employ a mouthpiece.  The challenge in measuring alcohol in breath from around the driver’s face or within the 
vehicle cabin is that the breath is diluted with the cabin air.  With funding from the Swedish Road Administration, 
Autoliv, Hök Instruments AB, and SenseAir AB have collaborated in the development of a non-contact method to 
measure alcohol in breath. The measuring principle of the sensor is to use measurements of expired carbon dioxide 
(CO2) as an indication of the degree of dilution of the alcohol concentration in expired air.  Normal concentration of 
CO2 in ambient air is approximately 400 parts per million or 0.04%.  Furthermore, CO2 concentration in alveolar air 
is both known and predictable, and remarkably constant.  Thus, by measuring CO2 and alcohol at the same point, the 
degree of dilution can be compensated for using a mathematical algorithm.  The ratio between the measured 
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concentrations of CO2 and alcohol, together with the known value of CO2 in alveolar air, can provide the alveolar 
air alcohol concentration.   

 
Figure 5. Breath-based sensor block diagram 

The sensor technology under development by Autoliv and its partners uses infrared (IR) spectroscopy, which is 
superior to conventional fuel-cell devices in two ways.  The IR-based sensors can be stable over the full product 
lifetime, eliminating the need for recurrent calibrations.  Furthermore, the IR sensor is not as sensitive as the fuel-
cell to major variations in ambient temperature. The 1st generation prototype uses a patented optical device in which 
multiple reflections of the IR beam within a closed space enables the calculation of alcohol concentration with high 
resolution.  The expired breath from the driver is drawn into the optical module through the breathing cup.  Once in 
the chamber, IR light is emitted from a light source and reflected by mirrors to increase the overall length of the IR 
optical path as shown in Figure 5, thus increasing the prototype’s resolution.  Detectors in the module then measure 
the ethanol and CO2 concentrations.  For the purposes of human subject testing, the current device requires drivers 
to blow towards the sensor, which is positioned at a distance of 5 inches. 

 The 2nd generation sensor underwent incremental improvement that primarily involved a change in material 
composition of the sensor optical housing as well as significant improvements in mirror fabrication, coating, and 
integrated heaters designed to improve startup time, accuracy and precision. Significant progress was made in the 
2nd generation with improvement to the startup time, dynamic accuracy and measurement performance at very low 
temperatures. The sensor underwent a series of Verification and Validation (V&V) tests as per the DADSS 
Performance Specification. The results from the V&V tests showed that there was no observed degradation or aging 
after these tests which simulated a vehicle life time of fifteen years.  

The 2nd generation optical sensing element is too bulky and not suitable for vehicle integration. Further 
improvements are required to meet the DADSS specification. In addition, the improved sensor should be more 
robust when exposed to thermal gradients during the startup sequence.  The focus of the current effort is to design, 
test, and validate a smaller, more robust optical sensor cavity that may be more easily packaged into a motor vehicle, 
with the objective remaining that the devices meet or exceed the DADSS Performance Specifications. Figure 6 
shows the evolution of the Autoliv sensors. 

 
Figure 6. Evolution of Breath-based DADSS Sensor 
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TECHNOLOGY & MANUFACTURING READINESS LEVELS  

To manage, measure, and assess the progress and maturity of both technologies during the research and 
development phase, Technology Readiness Levels (TRL) and Manufacturing Readiness Levels (MRL) will be used 
throughout the program. These Readiness levels provide common terms to define technology from concept to 
commercial production, and have a proven effectiveness from the aerospace and defense sectors. Independently, 
readiness levels can also assist with self-assessment, monitoring progress and planning goals and actions. The 
advantages of using readiness levels are: 

• provide a common understanding of technology and manufacturing readiness status 
• risk management 
• make decisions concerning technology funding 
• make decisions concerning transition of both technologies to the automotive industry 

The readiness levels used for the program are based on the “Automotive Technology and Manufacturing Readiness 
Levels, A guide to recognized stages of development within the Automotive Industry” by Professor Richard Parry-
Jones CBE, Co-Chairman of the Automotive Council. These levels were revised and updated by the DADSS 
Technical Working Group (TWG) to incorporate DADSS specific milestones to achieve demonstrated commercial 
feasibility as shown in Figure 5. 

 
Figure 7. TRL/MRL Demonstrated Commercial Feasibility 

Table 2 summarizes a preliminary evaluation of the “readiness” of the breath–based and touch–based technologies at 
the end of Phase II. As Figure 7 indicates, at the end of the 2008 cooperative agreement, the breath based technology 
achieved the expected TRL 4 level. The touch-based technology on the other hand was behind both TRL and MRL 
expectations. However, a number of technological challenges are ahead for the breath–based system relating to 
sampling in a vehicle cabin with the windows open and the air conditioning or heater on, which are not expected to 
be challenges that the touch–based system will need to surmount. Furthermore, the touch-based system readiness 
levels are anticipated to increase rapidly once development and integration of the full set of required multi-lasers 
packages is complete.  

Table 2. Technology and Manufacturing Readiness Levels by Technology Type 

Technology TRL MRL 

Breath-based 4 4 

Touch-based 3 2 
 

STANDARD CALIBRATION DEVICE (SCD) DEVELOPMENT 

Standard Calibration Devices (SCD) were developed to assess and document the accuracy and precision of the 
Phase I prototypes.  Two different SCDs were developed for prototype testing; one breath-based and one touch-
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based.  There are two aspects that were addressed (Ferguson et. al., 2010).  First, samples of simulated “breath” and 
“tissue” were developed to provide a calibrated (known) and consistent ethanol concentration in vapor and/or liquid 
to the prototype. These samples also had to provide reasonable facsimiles of human breath and tissue.  As noted 
above, the DADSS Performance Specifications for accuracy (SE) and precision (SD) are significantly more stringent 
than current evidential calibration instruments, thus the sample sources of breath and tissue had to exceed the 
DADSS specifications by an order of magnitude.  The second requirement necessitated the development of delivery 
methods so that the targeted samples could be effectively delivered to the prototypes. 

Tissue Spectrometry SCD 

An SCD sample that simulates human tissue must produce a consistent ethanol response from the sensor at all 
concentrations of BAC, mimic the average optical scattering properties of human tissue over the target NIR 
wavelength range, and maintain the test material at normal human skin temperature (34 ºC).  Figure 8 compares NIR 
reflectance of human versus simulated tissue and demonstrates the high level of concordance at the relevant 
wavenumbers. The system also must support varying concentrations of ethanol over the target BAC test range of 
0.02% through 0.12 % BAC. 

 

 
Figure 8. Comparison of NIR reflectance of simulated tissue solution with human tissue 

Working with TruTouch Technologies, an SCD system was developed that comprised standardized aqueous test 
samples representative of human tissue and an electromechanical fluidic system for introducing the samples to the 
sensor.  The standardized aqueous test samples are gravimetrically prepared solutions that use mono-dispersive 
polystyrene microspheres as an optical scattering agent.  Quantities of ethanol in the solutions are certified by GC 
analysis to meet the required concentration levels after the beads are added.  The simulated tissue solutions were 
stored in individual 15 mL vials.  In addition to water and alcohol the “tissue” samples contain normal components 
of human blood such as urea, salt, and creatinine, as well as albumin that simulates blood density, microspheres that 
simulate the reflectance and scattering properties of collagen, and Triton that prevents the beads from clumping. An 
automated pipette delivery system made by Hamilton eliminates human error and operator variability, as well as 
improves accuracy and precision during gravimetric preparation of the solutions. The system consists of the Nimbus 
independent two channel work station, the pedestals and deckware custom containers, and a third party Mettler 
Toledo scale to accommodate 10, 20, 40, 100mL vials (Figure 9). 
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Figure 9. Hamilton Nimbus Automated pipette delivery system 

The fluidic delivery system module was designed to easily attach to the TruTouch prototype sensor touch pad.  The 
system module creates a liquid seal interface to support direct coupling between the optical sensor and the SCD test 
sample.  The system also includes an agitation mechanism to prevent settling of the microspheres without 
introducing bubbles into the sample at the optical surface.  The sealed system prevents evaporation loss, allows for 
sample removal, cleaning, and drying between sample measurements to prevent cross-contamination, and provides a 
reasonable degree of automation to avoid operator error.  The prototype fluidics system is illustrated in Figure 9. 

 
Figure 10. Liquid coupling interface and prototype delivery system 

Distant Spectrometry SCD 

The first step in the development of highly accurate breath samples was the production of standardized calibration 
dry gases (Ferguson et. al., 2010).  Then the next step was to develop the DADSS dry gas mixture with the potential 
to exceed the DADSS Performance Specifications.  

Two ethanol gas mixtures in 110 L pressurized bottles were developed in cooperation with ILMO Products 
Company: 

1. Ethanol/Nitrogen (N2) 
2. Ethanol/N2/5 % CO2/16 % oxygen (O2) 

Each mixture was gravimetrically prepared at concentrations of 0.02, 0.04, 0.06, 0.08, 0.12 % BrAC.  The mixtures 
were certified at ±0.5 ppm (±0.0002 % BrAC) by the vendor, exceeding the 0.0003 % BAC SE and SD when tested 
at 0.08 % BAC.  In-house GC testing confirmed that the gas mixtures provided the levels of accuracy and precision 
for ethanol and other gases to the DADSS specifications over the complete range of gas concentrations.  Additional 
testing verified acceptable shelf-life stability of the gas bottles. 

Having validated that the dry gas mixtures complied with DADSS specifications, the next step was to humidify the 
gases to simulate human breath.  Tests were conducted using a spirometer on a healthy male subject to measure the 
average flow rate and time of an exhaled breath.  The ACTS team then developed a Wet Gas Breath Alcohol 
Simulator (WGBAS), shown in Figure 11, to add the necessary humidity.  
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Figure 11. WGBAS Configuration and principal of operation 

The WGBAS uses two dry gas sources: the first a mixture of N2/CO2/O2, and the second a 3000 ppm cylinder of 
ethanol, balanced with nitrogen.  Mass flow controllers (MFC) generate the range of humidified ethanol from 0.02 
% BAC to 0.12 % BAC.  The gas in the premixed cylinder of N2/CO2/O2 enters the gas mixing module, flowing 
through humidifier metering valves located in an enclosure on top of the heated chamber.  The proportional control 
of these valves allows the humidity to be adjusted.  The ethanol/ N2 mixture flows out of the second MFC and into 
the bypass line that flows around the humidifier.  The humidified N2/CO2/O2 mixture and the ethanol mixture meet 
before entering the hygrometer, which reports the dew point, humidity and gas temperature values, allowing for any 
necessary adjustments to obtain the required output of the humidifier.  The humidified gas mixture then passes into 
the evacuated pressure vessel where it accumulates to a preset pressure, as monitored by an absolute pressure 
transmitter.  When the preset pressure is met, the pressurized gas is expelled into the evacuated output tubing.  As 
the gas leaves the system it is cooled to 34ºC, the dew point temperature of the mixture, at a rate of approximately 1 
liter in 2-3 seconds, thus simulating a humidified gas flow of breath.  Figure 11 shows the WGBAS principle of 
operation described above. 

The SCD dry gas, when passed directly through the WGBAS, was capable not only of meeting but also exceeding 
the DADSS SEs and SDs.  In the second set of verification tests, humidity was added to the mixed gases with an 
output dew point of 34 °C.  The addition of humidity resulted in much larger SE values than the DADSS 
specifications and the SD values were influenced by differences in the ethanol concentration, with only the lowest 
ethanol concentration being able to meet and exceed the specifications.    

The WGBAS was not used in the Phase I evaluation process due to its current early development status. The system 
will undergo additional enhancements in Phase II to improve accuracy and precision through the introduction of a 
closed-loop feedback system to control the amount of ethanol concentration mixed into the gas stream.  Therefore, 
the system is planned to be used for prototypes evaluation in Phase II. 

Verification Process  

An SCD qualification process was developed to document that the breath and tissue sample performance meet the 
requisite performance specifications.  Initially, components of the breath and tissue SCD were measured with a Gas 
Chromatograph (GC) using a Flame Ionization Detector (FID) to verify that the critical SEs and SDs were achieved.  
The primary function of a GC is to separate and detect chemicals in a gas flow passing through a thin column lined 
with specific coatings that interact with the components in the flow. The FID ignites the gases flowing out of the 
column with hydrogen gas. The detector then generates an electrical signal corresponding to the amount of ionized 
products from the combustion. The area under the curve of the electrical signal is integrated to correspond to the 
concentration of the gases at the column exit. Temperature, flow rate, and column selection influence the retention 
time of gas flow components. 

The tubing and connections to the GC and the mass flow controller are heated to 34 °C, the exit temperature of 
human breath, to ensure the incoming gases are uniform and to assure consistent results. Several variables were 
found to affect and improve the GC ethanol measurement, including: 

• Operating at low temperature vs. high temperature;   
• Obtaining a homogeneous system, with uniform equilibrium temperature for each part of the system;   
• Passivating (ability to treat a surface (typically metal) so that it is less reactive chemically) the sample line 

and regulator;  
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N2/CO2/O2
cylinder
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Control Panel

Output Hose
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• Reducing the surface area of the sample line;   
• Creating a constant backpressure on the actuator valve exhaust line;  
• Producing a purging process for the regulator and sample loop.   

The influence of the variables were quantified and examined before an optimal operating condition was obtained for 
the ethanol gas measurement process.  Once the optimal operating conditions were identified, the dry and wet gases 
were then measured using the improved system shown in Figure 12.   

 
Figure 12. GC system used to measure ethanol gas 

Figure 13 shows the dry gas ethanol gas measurement that is inaccurate and imprecise (left) compared with a 
measurement, using the developed measurement process, that shows accurate and precise measurements within the 
DADSS specification (right). Figure 14 shows the WGBAS measurements within the DADSS tolerance 
specification. 

  
Figure 13. Standard and improved dry gas measurements comparison 
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Figure 14. WGBAS accuracy and precision using the improved GC system 

CONCLUSIONS 
Significant progress has been made to identify DADSS technologies that have the potential to be used on a more 
widespread basis in passenger vehicles.  Two specific approaches have been chosen for further investigation; tissue 
spectrometry, or touch-based, and distant/offset spectrometry, or breath-based sensors.  Proof-of-principle prototype 
DADSS sensors have been developed, one designed to remotely measure alcohol concentration in drivers’ breath 
from the ambient air in the vehicle cabin, and the other is designed to measure alcohol in the driver’s finger tissue 
through placement of a finger on the sensor.  

Progress also has been made to develop calibration devices for both breath-and touch-based bench testing that will 
be able to measure whether the DADSS devices can meet the stringent criteria for accuracy and precision.  Unique 
standard calibration devices have been developed for both the breath- and touch-based systems that go well beyond 
current alcohol-testing specifications.   

In summary, the DADSS Program so far has accomplished the goals set at the onset of the program.  Prototype 
testing has indicated that there are potential technologies that ultimately could function non-invasively in a vehicle 
environment to measure a driver’s BAC.  Furthermore, the DADSS Program is on track to develop research vehicles 
to demonstrate the technologies by the end of 2015.   
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ABSTRACT 
 
This paper presents an overview of the theory and implementation of a touch-based optical sensor (TruTouch sensor) for 
monitoring the alcohol concentration in the driver of a vehicle.  This novel sensor is intended to improve driver safety by 
providing a non-intrusive means of notifying a driver when their blood alcohol concentration may be too high to operate a 
vehicle safely.  The optical alcohol detection system has successfully completed several stages of development and 
validation.  A commercially available, industrial version of the system (TruTouch 2500, or Mark 1) has undergone 
extensive clinical testing and field validation.  Under the DADSS (Driver Alcohol Detection System for Safety) Program, 
a compact semiconductor version (Mark 2) of the optical system has been developed targeting use in consumer vehicles.  
Based on proven semiconductor laser technologies, the Mark 2 sensor system has demonstrated excellent spectral accuracy 
and precision and is currently undergoing laboratory validation testing.  A demonstration vehicle version of the system has 
been designed and will be implemented following completion of the laboratory validation testing. 
 
INTRODUCTION 

The negative societal impact of alcohol (ethanol) impaired vehicle driving has been established through 
numerous clinical studies [1] and confirmed by accident statistics over many years [2]. Currently, the primary 
means of mitigating alcohol impaired driving is through education and legal enforcement.  The percentage of 
alcohol in the blood circulatory system at any given time can be directly correlated with the neurological 
sensory, cognitive and reactive performance of the driver.  Legal limits for alcohol concentration have been 
established for drivers of both private and commercial vehicles [3].  Today, the use of alcohol detection 
technology for driver safety is limited to law enforcement testing (post-accident, during traffic stops / 
checkpoints) or in the case of previously convicted DUI offenders through the installation of a breath based 
vehicle interlocks.  These systems work well for the purpose of law enforcement but are unsuitable for routine 
use by consumers.  The goal of the current sensor development is to produce a system that is seamlessly 
integrated into the vehicle’s infrastructure, providing consumers with the knowledge of their alcohol 
concentration without imposing inconvenience to their daily driving experience. In order to accomplish this, a 
human machine interface (HMI) design has been proposed that incorporates the optical sensor into the vehicle 
start button.  Advances in automotive buttons and touchscreens make it feasible to integrate skin based sensors 
and achieve appropriate visual, audio, and haptic feedback without compromising function [4]. During routine 
vehicle operation, the driver’s alcohol concentration could be measured and communicated to the driver so that 
appropriate choices can be made (e.g. delay drive, alternate driver or alternate transportation method).  The use 
of existing vehicle occupancy sensors combined with advanced signal processing supports a simple and 
practical anti-spoofing method, improving the safety and efficacy of the system. 
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SENSOR THEORY OF OPERATION 

The TruTouch alcohol measurement technology has been validated using multiple approaches including in 
vitro (test tube) studies of multi-component samples, clinical studies involving alcohol dosing of humans, and 
real-world measurements by customers in a variety of challenging environments. The validation efforts are 
exemplified by multiple peer-reviewed journal articles and a strong intellectual property base. 

Scientific Basis of the TruTouch Measurement 
 
The TruTouch technology employs near-infrared (NIR) absorption spectroscopy to measure skin tissue. The 
NIR spectral region typically spans the portion of the electromagnetic spectrum between the visible, which is 
generally considered to end at 0.7 μm, and the infrared, which begins at 2.5 μm.  However, for measuring 
alcohol in vivo (in human), some portions of the NIR are more advantageous than others.  The features most 
commonly observed in the NIR are overtones and combinations of fundamental vibrations of hydrogen bonded 
to carbon, nitrogen, and oxygen [5,6,7,8,9].   
 
The absorbance spectrum of alcohol shows features over the NIR region (see figure 1).  The 1.25- μm 2.5 μm 
region contains the 1st overtone and combination bands of the carbon-hydrogen and oxygen-hydrogen bonds. 
The 0.7-1.25 μm region contains higher order overtones of these bonds. Examination of Figure 1 and its inset 
shows that the 0.7-1.25 μm region is 400 times weaker than the signal in the longer wavelength, 1.25- 2.5 μm 
region.   
 
Furthermore, the utility of the 
visible region (0.3 to 0.7 μm) and 
the 0.7-1.25 μm part of the NIR are 
limited by the presence of skin 
pigmentation (melanin) that creates 
large differences between people, 
particularly of different ethnicities. 
In contrast, the longer wavelength 
region is virtually unaffected by 
pigmentation [10].  As a result of 
the larger signal and absence of 
pigmentation, the TruTouch 
technology is designed to measure 
the longer wavelength (1.25-2.5 
μm) region. 
 
In addition to the aforementioned 
advantages, the NIR spectral region (4000-8000 cm-1 or 1.25-2.5 μm) is of prime interest for non-invasive 
alcohol measurements because it offers specificity for a number of analytes, including alcohol and other 
organic molecules present in tissue, while supporting optical path lengths of several millimeters with 
acceptable absorbance characteristics [11,12,13,14,15]. Comparing NIR spectra (normalized to unit 
concentration) of alcohol and water collected using a TruTouch system, demonstrates the effect of molecular 
structure on NIR absorption spectra and indicates spectral regions of separation (see Figure 2a).  
 

 

Figure 1.  Absorptivity of alcohol in the NIR and visible. 
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Figure 2.  Comparison of Alcohol, Water in NIR (a); Ethanol Test Results: 98 in-vitro samples (b). 

 
TruTouch systems (including Mark 1) are based on a Michelson interferometer Fourier Transform IR (FTIR) 
instrument that delivers NIR radiation to the skin and underlying tissue and collects the diffusely reflected 
signal using a fiber-based optical probe.  The collected light contains spectral information which allows the 
determination of the subject’s alcohol concentration directly from the measurement. Specific details of the 
industrial version of the optical alcohol detection system can be found in several issued United States Patents 
and applications [16,17,18,19,20]. 

Laboratory and Clinical Validation 

 
The objectives of any analytical measurement procedure are high sensitivity and high selectivity for the target 
analyte (e.g. alcohol concentration). Sensitivity refers to a method’s ability to respond to quantity changes in 
the target analyte, while selectivity is the extent to which a method erroneously responds to changes in 
interfering analytes (e.g. water, collagen, proteins, and other chemicals present in the body). Ensuring the 
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selectivity of an analyte measurement can be notoriously challenging in complex systems such as human tissue 
[21, 22]. Accordingly, careful design and controlled experiments are required to verify the validity of any 
measurement approach.   
 
Historically, researchers have used in-vitro experiments to assess the sensitivity and selectivity of methods for 
quantifying analytes at physiological concentrations [23,24,25,26,27,28,29]. These experiments are useful 
diagnostics for the validity of a measurement approach because sample composition and the experimental 
conditions are controlled by the practitioner; allowing direct assessment of measurement sensitivity and 
selectivity. For laboratory validation of the alcohol sensor, an optically scattering tissue phantom was 
developed using 0.3 micron diameter polystyrene microspheres to mimic the optical properties of human skin. 
 
To validate the Mark 1 sensor, a validation study comparing sensor measurements with tissue phantom samples 
containing gravimetric prepared ethanol, urea, creatinine, albumin, and saline was carried out. The study 
demonstrates the high degree of accuracy achievable with the touch based sensor (see figure 2b). 
 
In Vivo Clinical Results   

In order to demonstrate the accuracy of the sensor with human subjects, controlled clinical trials were 
conducted on the commercially available version of the system (TruTouch 2500, Mark 1).  In these trials, 
venous blood samples were collected and sent to a certified forensic grade lab for gas chromatography 
analysis.  Comparison data were collected on the TruTouch sensor, evidentiary grade breath sensor, and both 
compared against the venous blood samples.  Alcohol excursions were induced in 108 subjects at Lovelace 
Scientific Resources (Albuquerque, NM) following overnight fasts.  Written consent was obtained from each 
participant following explanation of the IRB-approved protocols (Quorum Review).  Baseline blood and touch 
NIR alcohol measurements were taken upon arrival in order to verify zero initial alcohol concentration.  The 
alcohol dose for all subjects was ingested orally with a target peak blood alcohol concentration of 120 mg/dL 
(0.12%).  The mass of the alcohol dose was calculated for each subject using an estimate of total body water 
based upon gender and body mass [29]. The test results (see figure 3), indicate a strong correlation between the 
touch based sensor and venous blood measurements [30].  

 

Figure 3. Human Subject (in-vivo) study results. 
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The top two plots compare the TruTouch sensor to venous blood measurements, and an evidential grade breath 
test to venous blood measurements, respectively.  The bottom plots compare data, limited to the “elimination 
phase” of the alcohol excursion (e.g. after the initial rapid physiological alcohol uptake which is governed by 
gastric emptying and absorption of the alcohol in the small intestine during and after consumption). 

 
SOLID STATE TOUCH SENSOR (MARK 2) 

The Mark 2 sensor under development for potential application to vehicle operation uses standard automotive 
electronic design (see figure 4a) and discrete semiconductor lasers to encode the specific spectral information 
necessary for alcohol measurements.  

 
Figure 4. Solid State Design (a), Laser line targets (b), Prototype Multi laser Module (c). 



   

Cech, 6 
 

 

In contrast to the Mark 1 sensor, which measures a semi-continuous spectrum, the new design uses discrete, 
narrow-band spectral lines specifically chosen through analysis of several hundred thousand in-vivo alcohol 
tests.  The laser wavelengths are targeted to spectral regions where ethanol and water absorbance levels are 
separable (see figure 4b), optimizing ethanol detection while avoiding the strong water absorbance features.  

The use of multiple discrete lasers to interrogate spectral information allows for a highly integrated, compact 
optical module.  For the Mark 2 design, a custom 12 laser prototype module was developed with individual 
controllable laser die mounted on ceramic substrates (see figure 4c).  The inset detailed view shows the 
individual laser die mounted on the ceramic substrate. The design is compact, even at the prototype phase, and 
can be further integrated using packaging techniques developed for laser applications in other industries. 
 
To show the spectral measurement accuracy of the Mark 2 system, several standard benchmark measurements 
have been performed and compared to both the Mark 1 system and to laboratory grade FTIR spectrometers (see 
figure 5).  Measurements to date indicate good agreement with laboratory grade and Mark 1 system 
measurements. Additional testing is ongoing and planned including in-vitro and in-vivo studies similar to those 
previously described to verify performance that exceeds all previous FTIR systems and approaches 
performance targets for a vehicle based system. 
 

 
Figure 5.  Mark 2 Measurement performance comparison compared to FTIR. 

 

AUTOMOTIVE ADS SYSTEM CONSIDERATIONS 

Although significant progress has been made towards establishing the feasibility of a non-invasive touch based 
alcohol measurement system, continued research and development is necessary to achieve a production 
automotive system that can meet aggressive targets for performance, measurement time, reliability and 
robustness.  Several key considerations in the touch based design are explored further below.   
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Human Machine Interface  A touch based sensor provides a natural opportunity to integrate the sensor 
touchpad into a standard starter ignition switch. Inclusion of proximity and/or touch sensors in the design 
supports the ability to enable alcohol measurements only when appropriate. Inclusion of a haptic actuator(s) 
and/or light(s) provides for natural HMI feedback (see figure 6). For example, light and haptic actuators can be 
used to provide driver feedback on proper finger placement, measurement initiation, measurement result and 
other desired HMI feedback. 

 

Figure 6.  Prototype alcohol measurement ignition switch integration concept. 

A vehicle ignition system provides one natural touch based measurement location; other viable locations 
throughout a vehicle exist where a driver/operator skin touch interface might be used for initial or periodic 
alcohol measurements.  

Anti-Spoofing Concept   

Based on the proposed ignition switch HMI integration, there is the potential for non-impaired occupants to try 
and test (start the vehicle) on behalf of another person, who intends to drive, but is impaired.  To mitigate this 
situation, a simple anti-spoofing method can be achieved through the integration of an electric field Occupant 
Classification System (OCS) within the driver seat. Such systems are often used in production vehicles for the 
front passenger seat to satisfy a regulatory requirement to distinguish child seats from empty or full size human 
occupants. The information is often used to suppress airbag deployment in the case of child seats or empty 
seats. Electric field based OCS systems emit a controlled signal in proximity to the seat occupant. This 
harmless signal is influenced by the seated occupant and is transmitted through anything that the occupant 
touches.  Because the ignition switch is touched by the driver, detection of this OCS signal can be used to 
distinguish the seated driver from others touching the ignition switch. The alcohol measurement control logic 
can be configured to require a new ignition touch (measurement) for all driver seat occupancy state changes 
(e.g. ingress/egress).  This anti-spoofing concept could be further enhanced through signal integrity methods 
currently used in secure, safety automotive systems.   
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Environmental, Life and Ruggedness   

The Mark 2 design is based on electro-optical components widely used in aerospace, defense, communications 
and commercial industries requiring high accuracy and precision in a rugged environment and over long 
operational life. Lasers and detectors of the type utilized have been verified for long term operation through 
military specification environmental and ruggedness testing [31, 32].  However, the Mark 2 application, 
introduces new technical and commercial challenges. For example, the measurement touch probe surface must 
be designed to operate with a wide range of finger surface chemicals and mechanical abuse such as scratching 
or impact.  In addition, the system must be capable of reliable and accurate operation over full vehicle life, 
despite natural sub-system aging and drift. To mitigate these effects, the Mark 2 design incorporates an 
absolute chemical reference to allow for variance, bias and drift removal from measurements, over the course 
of the system life, in addition to providing a method to verify measurement quality and viability. Such 
techniques are widely used in other safety critical automotive sensors.  

Commercial Challenges  

The primary technical limiting factor in the development of the Mark 2 system is the fabrication and 
manufacturing base immaturity of the laser module and supporting optical interfaces. While advancements in 
the field of lasers is widespread [33,34], particularly due to new applications and markets evolving quickly, 
there are currently limited fully developed applications for semi-conductor lasers with the target wavelengths 
and optical powers targeted for the Mark 2 system.  

To date, many of the target high laser wavelengths are only required in small volume specialized applications 
or in clinical research.  On the contrary, many of the lower wavelength lasers required for the Mark 2 design 
are used in high volume, high reliability, and moderate to low cost packages for high bandwidth 
telecommunications.  Lessons learned in the evolutionary technology and manufacturing growth of laser 
diodes can help accelerate the maturity and availability of higher wavelength diodes for use in this application.  
Research and development in non-invasive medical sensing is accelerating, driving new applications and 
markets; organically increasing manufacturing base and test investment necessary to lead to competition for 
low cost, high reliability automotive quality laser modules for non-invasive alcohol sensing.  

CONCLUSIONS 

Establishing the technical feasibility for a touch based sensor that could be used to accurately and precisely 
measure blood alcohol concentrations is a key initial step towards providing technical solutions to reduce 
alcohol impaired driving. The solid state Mark 2 system prototype provides a technically feasible architecture 
based on initial testing, with concepts to achieve naturalistic HMI and an anti-spoofing method. However, 
additional testing and design iteration are required towards a system that is capable of meeting automotive 
requirements.   
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ABSTRACT 
 
 BrACs (Breath alcohol concentrations) are often converted to the corresponding BACs (blood alcohol 
concentrations) by multiplying a partition ratio, Q.  However, according to the previous researches, it has been 
revealed that it depended upon the nations. So, the partition ratio (or Q-factor) of healthy Korean adult males and its 
correlation to some variables including TBW (total body water), BMI (body mass index), BFM (body fat mass), and 
PBF (percentage of body fat) were revealed.  The average of partition ratio did show particular difference around 
100 when the subjects were divided with two sets: below and above the average of TBW.  The partition ratio of 
Korean healthy males showed 1,913 (95 % confidence interval (CI) from 1,889 to 1,937) for whole time intervals.  
However, when Q was averaged after peak BACs, it gave 2,011 (95 % CI range from 1,982 to 2,040).  Bland-
Altman plots revealed the compatibility of measurement method of multi-gas analyzer, and the biases according to 
the partition ratios (Q=2,100 and Q=1,913) gave -0.0052 (95 % CI from -0.0059 to -0.0045) and -0.0004 (95 % 
CI from –0.0011 to +0.0003), respectively.  From this study, the partition ratio of Korean healthy males has 
been reported for the first time with massive medical experiments. 
 
INTRODUCTION 

The vehicles are getting more and more important in modern life for traveling, commuting, and logistics etc..  As the 
numbers of automobiles increase, however,  road traffic safety become a national-wide matter in order to diminish 
road traffic accidents and also fatalities.  In Sweden, they declared Vision Zero slogan in order to eliminate any 
victom from the road traffic accidents [1].  Among the road traffic accidents, alcohol-related crashes and fatalities 
are the major issues around the world in terms of improving more safe road traffic situation.  In order to alleviate 
alcohol-related accidents, most of nations use alcohol sensing appartus for screening drunken drivers and it 
measures BrAC by using optical components or fuel-cell type devices [2, 3]. 
Currently, the breathalyzers for monitoring BrAC are widely used in the world in order to screen impaired drivers at 
the roadside. The regal limit for impairments are 0.08 % in U.S. and 0.05 % in most European countries. Although, 
Sweden adopted a 0.05 % BAC limit in 1950s, the regal limit of BAC has been recently lowered to 0.02 % in order 
to improve traffic safety further.  By lowering regal limit, James and Robert reported that fatal crashes and severe 
personal injuries have been decreased and settled down more safe road traffic situation than ever [4].  In 1962, 
Korean government legitimated the road traffic law in order to enforce alcohol-impaired driving.  After four 
decades, BrAC analysis for road traffic offences is regulated in 2006, setting a regal BAC limit of 0.05 % for 
driving.  Also, there were several trials to decrease the regal limit of BAC to 0.03 % for road traffic safety and for 
decreasing alcohol-related fatalities.   
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Since the consumed alcohol is eliminated from the body also through the exhaled air that is coming from deep lungs 
[5, 6], the measurement of BrAC has been evaluated to analyze BAC for decades.  The relationship between BAC 
and BrAC has been studied for long time, so BAC is currently converted from BrAC by multiplying by a 
BAC/BrAC ratio known as partition ratio or conversion factor, Q. The US NHTSA (National Highway Traffic 
Safety Administration) uses a conversion factor, Q, as 2,100 [7], this value was also adopted for converting BrAC to 
BAC in Korea.  However, Jones and Andersson reported that most countries adopt a conversion factor of 2,000 to 
2,300 [8].  Furthermore, the recent study showed that the conversion factor could be ranged from 2,225 to 2,650; 
Jones and Andersson reported the average conversion factor was 2,448 in their article [9], Pavlic et al. presented the 
time dependency of Q ranged from 2,225 to 2,650 [10], and Lindberg et al. showed that the BAC/BrAC ratio was 
2,251 in case of Swedish subjects [1].  
Since the conversion factor, Q, is relavant to BAC determined from breathalyzer and also it is relatively different 
from country to country, the aim of this study is to identify the BAC/BrAC ratio of Korean healthy males and its 
correlation to some variables: TBW, BMI, BFM, and PBF in this research.  
 
MATERIALS AND METHODS 

Subjects 

One hundred and one individuals, whole healthy males, were enrolled in this study as paid volunteers.  Ages ranged 
from 20 to 50 years and body weights ranged from 55 to 78 kg.  Whole subjects were not heavy consumers of 
alcoholic beverages (less than two bottles of Soju (20 % (v/v) in their regular lifestyle).  The study was approved by 
the Ethics committee of Konkuk University Hospital, Korea.  
 
Experiment procedures 
 
The volunteers were recruited by posting announcement through internet or public board.  The volunteers were 
screened by psychiatric doctor with basic medical and psychiatric checkup containing physical examination, vital 
sign, CBC (complete blood count), LFT (liver function test), vital sign check, Alcohol Use Disorder Identification 
Test-Korea (AUDIT-K), CAGE (cut-down, annoyed, guilty, eye-opener) survey.  Finally, 101 individuals were 
selected and participated in this research.  Whole participants checked up their current physical status by measuring 
weight, height, TBW, BFM, PBF, and BMI, which were analyzed by InBody 720 (InBody Co., LTD.).  Since it 
roughly took 2 minutes to analyze one breath sample, the volunteers were divided into ten groups.  The volunteers 
belonged to each sub-group were randomly selected and each subject was asked to consume 0.35 mg/ml/kg or 0.7 
mg/ml/kg Soju (30 % (v/v)) for 15 minutes.  After consuming alcohol, they are allowed to rinse the mouth with 
drinking water in order to ensure the absence of mouth alcohol before the first testing, however, not allowed to drink 
water until 2 hours after consuming whole alcohol.  The samples (one blood and two breath) were obtained at timed 
intervals of 15, 30, 45, 60, 90, 120, 180, 240 minutes after drinking alcohol in order to reveal the relationship 
between BAC and BrAC for healthy Korean males.  The BAC/BrAC ratio was analyzed according to the four body 
index (TBW, BFM, PBF, and BMI).  In order to avoid complexity in subsequent data interpretation, no food and 
mixing of different alcohol were allowed, furthermore, violent physical activity was not allowed during the 
experiment also.  
 
Collection of blood and BAC analysis 

After drinking of alcohol within 15 minutes, a blood sample of 2 mL was drawn from the proximal stopcock which 
is connected to the indwelling catheter at each timed interval as mentioned earlier and injected into a 3 mL 
Vacutainer tube (BD Franklin, Lake NJ, USA), containing EDTA (Ethylene-diamine tetra-acetic acid).   The tubes 
were stored in a refrigerator at 4 to 6 °C and brought to Neodin medical Institute located in Seoul the day after the 
experiments were finished for each sub-group.  Each delivered blood sample was analyzed by enzymatic methods 
(COBAS Integra 800, Roche USA) twice times in order to reveal BAC.  
 
BrAC Measurements 

One breath sample for each volunteer was collected with 3 liter non-odor bag (TK005-N-003, BMS Corp., Japan) at 
the same time the blood sample drawn from the indwelling catheter and analyzed with INNOVA-1312 multi-gas 
analyzer (LumaSense Technologies, Denmark).  The analyzer used in this study consists of two main components: 
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optical and acoustical measurement units.  By adopting photo-acoustic measuring principles, it could analyze gases 
from ppb to ppm level. So, this analyzer has been selected as a reference BrAC measurement apparatus in this study.  
However, in order to enhance the measurement reliability, the multi-gas analyzer was sent back to the manufacturer 
for adding a new filter (for ethanol measurement) and was calibrated in order to secure the accuracy of 
measurement.  After measuring each breath sample three times with multi-gas analyzer, the average BAC has been 
converted ppm level to percentage level by multiplying conversion factors.  The other breath samples for each 
person were measured by using four portable breathalyzers (AL9000, Sentech Corp., Korea) at timed intervals of 15, 
30, 45, 60, 90, 120, 180, 240 minutes after drinking alcohol.  Then four-measured values were averaged after 
finishing tests for comparison.  Each portable breathalyzer was also calibrated before the experiments to 
alleviate the reliability issues raised in fuel-cell type breathalyzer. 
  
Calculation of Q 

The partition ratio, Q, was individually calculated for each subject from the ratio of the mean BAC value to the 
average BrAC value determined from the multi-gas analyzer in this study.  However, the ratio of BAC to BrAC 
value, Q, assumed to be 2,100 in portable breathalyzer because Korean jurisdiction admitted this value 
currently.  All statistical parameters such as average, standard deviations of average and 95 % confidence 
intervals for the calculated parameters were acquired with MS Excel 2013 and also Sigma Plot 12.5. 
 
RESULTS and DISCUSSION 
 
After arranging BAC results according to the elapsed times, Korean adult males show three characteristic alcohol 
metabolisim patterns as shwon in Figure 1: left-shifted, standard, and right-shifted patterns (five mixed patterns are 
excluded in this analysis).  The numbers of subjects belonged to each category denote as n in Figure 1.  Compared to 
Figure 1 b), left-shifted pattern reveals no peak of alcohol concentration in their blood, however, right-shfited (also 
standard) type presents a peak alcohol concentration after 90 mins later in this subject.  As can be inferred from 
Figure 1, the alcohol metabolism of Korean adult males could be divided into three characteristic patterns. 
 

 
 a)                                                      b)                                                    c) 

Figure 1. Three characterisitic patterns of BAC: a) left-shited (n=29), b) standard (n=52), c) right-shfited(n=15). 
 
 

            
                                                        a)                                                                            b) 

Figure 2. Relationship between BAC and BrAC with two different BrAC measurements. 
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Figure 2 shows  the relationship between BACs and BrACs measured by two different apparatus: multi-gas analyzer 
and portable breathalyzer with an assumed partition ratio, Q=2,100 (N=808, numbers of whole measured values).  In 
case of multi-gas analzyer, BACs are overestimated as depicted in Figure 1 a); regression line y=0.8852x+0.0006 
with R=0.962.  However, when breath alcohol concentrations are measured with portable breathalyzer, BACs were 
underestimated as can be seen in Figure 1 b); regression line y=1.1628x+0.0062, wih R=0.939. Even though there 
was small bias that is roughly 10 % of the error (± 0.005 %) with the measurement of multi-gas analzyer, the data 
measured by breathalyzer showed little higher offset value in BAC measurement.  Furthermore, even BACs had 
some meaningful values, the breathalyzer didn’t monitor the actual BACs in some subjects. 
Since there were some differnces between BAC and BrAC measurements in both cases when the partition ratio, Q, 
was used as 2100, the partition ratio was calculated according to the elapsed time.  Low BACs which are less than 
0.01 % are excluded in this analysis in order to increase the accuracy of partition ratio.  Also, the average value of 
Tmax, which means the average time that BAC reaches the highest value after consuming alcohol in this study, was 
55 mins [11], so the partition ratios were calculated with this time reference and showed as in Figure 3.  During the 
absorption period (which was less than 60 mins after consuming alcohol), average of Q was 1,779.  However, after 
60 mins (this time intervals belonged to the digestion of alcohol), the average partition ratio was 2,011.  
Furthermore, when whole data were calculated without the time limitation, the average partition ratio of healthy 
Korean males was  calculated as 1,913.  
 

 
Figure 3. Partition ratio as a function of BAC 

 
When total body waters were above and below the average value (42.4 Liters), the average of Q-factor was 1,903 
(95% C.I. 1,870 to 1,938) and 1,999 (95% C.I. 1,966 to 2,033), respectively. In terms of BMI, the average of BMI 
was 25 for healthy Korean male. When BMI was above the average value, the partition ratio showed 1,935 (95% 
C.I. 1,887 to 1,983). When the partition ratios were categorized into body fat mass (BFM) and percentage body fat 
(PBF), the averages of partition ratio presented 1,950 (95 % C.I. 1,916 to 1,983) and 1,957 (95 % C.I. 1,924 to 
1,990) when BFM and PBF are above the average values, respectively.  The data related to partition ratio according 
to body index were listed in Table 1. 
 

Table 1. Partition ratio according to body index (excluded BACs less than 30 mins) 

Categories 
BMI TBW BFM PBF 

Above 
Ave. 

Below 
Ave. 

Above 
Ave. 

Below 
Ave. 

Above 
Ave. 

Below 
Ave. 

Above 
Ave. 

Below 
Ave. 

Average values 1,935 1,951 1,903 1,999 1,950 1,941 1,957 1,934 
95 % 
C.I. 

Lower Limit 1,887 1,924 1,870 1,966 1,916 1,905 1,924 1,898 
Upper Limit 1,983 1,979 1,938 2,033 1,983 1,976 1,990 1,979 

Standard Deviation 315 284 308 267 285 304 284 305 
 
The partition ratio (Q=2,011 after 60 mins later) would be a important factor in order to calculate the estimated 
BAC when the extrapolated BAC is needed to evaluate initial BAC value [12] by police.  Also the average 
partition ratio, after drinking alcohol without time limit, would be essential to the manufacturer of BAIIDs 
(breath alcohol ignition interlock devices) since the user of BAIIDs would be requested to pass the rolling 
retest during driving [13, 14].  So, it would be valualbe to know the relationship between BACs and BrACs as 
a parameter of partition ratio and showed their relationship in Figure 5.  As can be seen in Figure 5, when 
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Q=2,100 was adopted to calculate the BACs, the actual BACs would be overestimated by the exhaled breath 
samples.  The regression line showed y= 0.8615x+0.0023 with R=0.944 in this case (Q=2,100).  It would be 
certain that the measurement results can be not favorable to Korean healthy males. However, when the 
partition ratio is less than 2,100, as denoted in Q=1,913 (depicted in red dots), BrACs product by Q showed 
more favorable matches that the previous results with regression line, y= 0.9457x+0.0023, with R=0.944.   
 

 
Figure 5. BAC vs. BrAC according to the partition ratio, Q.  

 
In order to assure the capability of replacement of invasive BAC measurement, Bland-Altman plots according 
to the partition ratios (Q=2,100 and Q=1,913) have been presented in Figure 6.  If there is no or small bias in 
Bland-Altman plot, it is well known that a new experimental apparatus or device could be replaceable in 
medical checkup etc.  As described in Figure 6 a), when the partition ratio, Q, was used as 2,100, there was a 
bias with -0.0052 and showed its 95 % CI from -0.0059 to -0.0045.  Also the limits of agreement ranged from -
0.0242 to 0.0138. Even though it is not shown in this article, when Q=2,011 is adopted, the bias showed -
0.0029 and its 95 % CI marked from -0.0036 to -0.0022.  However, when Q=1,913 was multiplied to BrACs in 
order to calculate BACs, the bias showed -0.0004 and revealed its 95 % CI from –0.0011 to +0.0003.  
Furthermore, the limits of agreement of evaluation ranged from -0.0179 to +0.0171.  Since the limit of 
agreement had offset toward negative value in case of Q=2,100, the measured values from multi-gas analyzer 
would clearly exaggerate BACs as mentioned in Figure 5.  From the results mentioned above in Figure 5 and 
Figure 6, it is clear that the average value of partition ratio calculated with the whole time interval BAC/BrAC 
ratio will be more reasonable than the value of Q (=2,100) used in current breathalyzer for Korean adult males.  
 

 
                                                  a)                                                                          b) 

Figure 6. Bland-Altman plots according to the partition ratio, Q: a) Q=2,100, b) Q=1,913. 
 
CONCLUSIONS 
 
In order to reveal the relationship between BAC and BrAC of healthy Korean males, the huge medical 
experiments has been executed for the first time in Korean medical study.  Korean healthy males showed three 
characteristic BAC patterns, however, more than 50 % subjects (52 out of 101 individuals) participated in this 
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study showed a standard pattern with BAC peak around 50 mins.  Even though there was no big differences in 
partition ratio in terms of BMI, BFM, and PBF, however, there was a meaningful gap in partition ratio when 
TBW is divided into two categories: above and below the average value.  Since the partition ratio differed from 
the conventional value (Q=2,100) in case of Korean healthy males, it would be better to consider a new value 
(Q=1,913) or execute more profound research activities in order to calculate BACs from BrACs for Korean 
healthy males.  The more reasonable partition ratio included Korean females will be reported shortly in the 
near future. 
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ABSTRACT 
 
Although the vast majority of vehicle drivers are sober, drunk driving remains to be a major contributor to fatal 
accidents. Massive deployment of unobtrusive breath alcohol sensing systems could potentially save tens of 
thousands of lives worldwide every year by preventing drunk driving [1]. The work reported here is ultimately 
aiming at such a system. The technical performance of the present sensing system with respect to automotive 
requirements is summarized, and new results towards unobtrusive breath alcohol determination within vehicle 
compartments are presented.  

Breath alcohol concentration (BrAC) can be determined unobtrusively if (i) the sensing system provides real-time 
signals with adequate accuracy corresponding to the local concentrations of both alcohol and a tracer gas, e g CO2, 
(ii) the dilution of the breath is not excessive in relation to background concentrations, (iii) the sensor location can 
be seamlessly integrated into the interior of a vehicle cabin. All three of these aspects are addressed in the present 
paper.  

More than a hundred prototypes based on infrared spectroscopy were fabricated and subjected to automotive 
qualification tests in the full temperature range -40 … +85⁰C. In the majority of tests, adequate performance was 
noted. Measures are now being taken to fill remaining performance gaps. Test results with human subjects were 
positive and in accordance with expectations with respect to physiological variations. In-vehicle tests showed that 
for the best sensor position, passive breath samples allowed BrAC to be determined at a resolution of 2-4% of the 
US legal limit, providing proof-of-principle for unobtrusive testing. Nevertheless, vehicle integration remains to be 
the major technological challenge to the objective of deployment on a large scale of unobtrusive driver breath 
alcohol determination. 

The feasibility of unobtrusive breath alcohol determination in vehicles, and adequate performance of a sensor 
system based on infrared spectroscopy have been experimentally demonstrated. The alcohol sensing system may 
advantageously be integrated into vehicles, and may also be combined with other technologies to monitor driver 
impairment. 

INTRODUCTION 

Although the vast majority of vehicle drivers are sober, drunk driving remains to be a major contributor to fatal 
accidents. Many informative and persuasive initiatives have been undertaken. Devices for the determination of 
breath alcohol concentration (BrAC) are commercially available for screening and evidential purposes, and alcohol 
interlocks are being increasingly used [2]. However, according to the driver alcohol detection system for safety 
(DADSS)  initiative [3, 4], there is a need for radical improvement in order to make such devices acceptable on a 
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larger scale. The technology needs to be unobtrusive to the sober driver, and it should determine whether the 
driver’s blood alcohol concentration (BAC) is above or below the legal limit with high accuracy. Deployment of 
such a technology on a large scale could potentially save tens of thousands of lives every year by preventing drunk 
driving. 

Our research towards less obtrusive sensor systems for BrAC determination started in 2005. The envisioned system 
will unobtrusively and accurately detect alcohol in the driver’s breath before the vehicle may be started, or while 
driving. In earlier publications, we have demonstrated methods and system solutions for contactless determination of 
BrAC [5, 6] in screening applications where sobriety is expected to be the norm. The physiological rationale of 
using a tracer gas, e.g. carbon dioxide (CO2), for contactless determination was examined [7], and the usefulness of 
this technique in patients with reduced consciousness was demonstrated [8]. Recently, further progress towards 
unobtrusive and highly accurate BrAC determination in automotive applications has been demonstrated [9, 10, 11]. 

In this paper, an updated review of the methods and technology for unobtrusive and highly accurate breath alcohol 
determination is provided. New experimental results are presented on the technical performance of the sensing 
system with respect to automotive requirements. Results from human tests and in-vehicle unobtrusive testing are 
summarized and discussed in view of the overall objectives. 

METHODS AND TECHNOLOGY  

Basic system function 

Breath alcohol concentration (BrAC) can be determined unobtrusively if (i) the sensing system provides real-time 
signals with adequate accuracy corresponding to the local concentrations of both alcohol and a tracer gas, e g CO2, 
(ii) the dilution of the breath is not excessive in relation to background concentrations of both alcohol and the tracer 
gas, (iii) the sensor location can be seamlessly integrated into the interior of a vehicle cabin without undue influence 
from passengers or other sources of interference. These three aspects will be addressed throughout the paper. 

The requirements of unobtrusiveness and high accuracy are seemingly contradictory. A key to resolving this 
contradiction is to introduce a two-step procedure, in which the first unobtrusive step is providing a preliminary 
result whether the driver’s BrAC is above, say half the legal limit, or not. If below, the vehicle immediately becomes 
drivable (‘green’). If BrAC is much higher than the legal limit, the drivability will be locked (‘red’). A sober driver, 
and one with BrAC clearly above the legal limit, will thus perceive the system to be unobtrusive. If the unobtrusive 
BrAC reading is in the ‘yellow zone’ in between, the driver will be offered the possibility of providing an active 
breath test in order to determine BrAC with high accuracy. 

Figure 1 schematically shows a typical time sequence starting by automatically switching on the sensor system when 
the car is unlocked. The sensor is staying in a standby mode until the door to the driver’s seat is first opened and 
then closed. This is the point when the sensor is activated. The occurrence of a CO2 peak is used as an indicator of a 
breath above the background level. If a corresponding peak of ethyl alcohol (EtOH) is detected at basically the same 
point in time, it is possible to estimate BrAC using the following equation 

BrAC = EtOHmeas * DF = EtOHmeas * (CO2et-CO2background) / (CO2meas-CO2background)   (1). 

The subscript ‘meas’ denotes the measured peak values, and ‘CO2et’ the end tidal CO2 concentration, which is 
believed to approach the alveolar concentration, typically 4.8±0.5 vol% [7, 12]. DF is the dilution factor, ranging 
from one in highly concentrated air close to the mouth of the subject, to large numbers at a large distance. The 
background CO2 concentration is typically less than 0.1 vol%. The standard measurement unit for BrAC is mg/L, 
which relates to blood alcohol concentration (BAC, %) by the approximate relation 1 mg/L BrAC = 0.2%BAC [13]. 
The US legal limit of 0.08%BAC thus corresponds to a BrAC value of 0.4 mg/L.  
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Figure 1. Schematic time sequence of unobtrusive breath test.  
 

The active test to be performed when the unobtrusive test results in a “yellow zone” BrAC value, is expected to 
distinguish with a high accuracy whether or not the legal limit is exceeded. Then it is necessary to provide an 
undiluted breath sample (DF=1 in equation (1), independent of CO2meas).   It should be noted that continuous or 
intermittent monitoring using basically the same scheme is also possible during driving. Accumulating data over 
time adds to the accuracy of the system.  

System implementation 

The sensor system includes the following critical parts: 

• Air inlet defining the sampling point at which air is continously being withdrawn, and fed to: 
• A measuring cell including optical and sensing elements for real-time infrared transmission measurement 

for the selective detection of CO2 and EtOH, respectively 
• Signal processor for digitizing the sensor signals into a standard, calibrated format corresponding to local 

gas concentrations 
• Auxiliary sensor elements to distinguish between a true breath and possible interference 
• Main processor performing algorithms for breath recognition and BrAC determination, including eq. (1).  

 

Three prototype generations of the system have been implemented so far. The 3rd generation devices were 
miniaturized compared to generation 2, with approximate dimensions 120 x 40 x 20 mm, packaged for handheld use 
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vehicle integration. Figure 2 shows photographs of the unpackaged device, a handheld implementation, and a 
possible future integration of the device into the A-pillar of a vehicle. 

        

Figure 2 Photographs of an unpackaged sensor (left), a handheld device (middle), and a device integrated into 
the A-pillar of a vehicle (right). 

With a handheld device operated at 3-5 cm distance, the dilution factor DF will be in the range 1.5-2.5. For a less 
obtrusive breath at 15-20 cm distance DF is typically 5-10. 
 
Experimental tests 
Extensive tests have been performed on the device and system levels, with experimental settings involving both 
artificial and human objects. The device level included automotive qualification tests, and tests on human subjects. 
More details of these tests are provided in the Results section. 
 
In-vehicle system tests were performed in order to provide an understanding of the critical boundary conditions 
relating to unobtrusive breath alcohol determination. The breath flow is expected to be influenced by other flow 
sources, including ventilation, air conditioning, passengers, and obstacles within a vehicle compartment. The in-
vehicle tests included theoretical simulations using finite element methods, and experimental visualization of 
breathing pattern using a phantom and water mist as an optical contrast medium. A third method was to position 
sensor prototypes at various locations within a vehicle compartment, and to record and analyze the sensor signals 
upon entrance of a human subject into the driver’s seat. 
 
RESULTS 
This section will provide a summary of results from automotive qualification tests, tests on human subjects, and in-
vehicle tests.  

Automotive qualification test results 
When possible, the tests were performed according to industrial standards. However, in several cases more stringent 
specifications were adopted [14, 15] compared to requirements according to current industrial standards. This was 
especially the case when the requirements related to measurement accuracy and startup time were examined in view 
of unobtrusive and highly accurate BrAC determination. More than a hundred complete devices of generation 2 and 
3 have been fabricated and tested.   
 
The test results are summarized in table 1, including columns of the test types, relevant limit values, standards, and 
test result. In total 18 test types were included, all of which primarily relate to the device performance. The majority 
of tests were performed on generation 2 devices. Results from generation 3 are underway and will be added in due 
course. 
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Table1. 
Results of automotive qualification tests.    

 
Test Limit Standard Test result 

Unit-unit calibration error EtOH           ±5% [14, 15]  Pass 
Unit-unit calibration error CO2 ±5% [14, 15] Pass 
Resolution            2μg/L [14, 15] Pass 
Linearity                       ±2% [14, 15] Pass 
Startup time at room temp            5 sec [14, 15] - 
Startup time at -40°C           20 sec [14, 15] - 
Power consumption 70W peak, 8W cont. [14, 15] Pass 
Function test 0°C … +85°C ±0.03 mg/L [14, 15] Pass 
Function test -40°C ±0.03 mg/L [14, 15] - 
Cross sensitivity            Acetone, … EN50436-1,2 Pass 
Barometric pressure 0.8  ... 1.1 bar EN50436-1,2 Pass 
Manipulation, circumvention - EN50436-1,2 Pass 
Vibration test - ISO16750 Pass 
Mechanical shock - ISO16750 Pass 
Accelerated aging Corr. to 15 yrs of use [14, 15] Pass 
Corrosive atmosphere NOx, SOx … [14, 15] Pass 
EMC 200V/m immunity [14, 15] Pass 
Application-like long term test - [14, 15] Pass 

 
 
Table 1 summarizes the fact that the results met or exceeded the requirements in the majority of tests. 
There is still a gap between actual and required performance at extremely low temperature, and some 
improvement is required for the startup time. 
 
Human subjects study  

The human subject tests were motivated by the fact that the proposed technique represents a new method in 
need of experimental evidence. The results summarized here have recently been published in more detail 
elsewhere [10].  

Thirty adult volunteers with an age distribution from 19 to 70 years were enrolled for the test and provided 
their informed consent to participation. The study was approved by the Swedish Ethical Review Board in 
Uppsala (dnr 2013-089). Each subject was instructed to consume alcohol with a target intoxication level of 
0.06 to 0.10 %BAC (BrAC 0.3 to 0.5 mg/L) within 15 minutes. The dosage was decided using body weight as 
the main parameter. During the elimination phase, the subjects performed breath tests every 20 minutes, using 
generation 2 devices both in a contacting mode or operation with a mouthpiece, and without a mouthpiece at a 
distance varying from 3 to approximately 15 cm. On each of these occasions a reference BrAC value was 
obtained with an evidential breath analyzer, Evidenzer (Nanopuls AB, Uppsala, Sweden). A total number of 
1,465 breath tests were performed.    
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a)                                                                              b) 
 

Figure 3 Results of human subjects test of thirty volunteers. The graph a) represents active tests with a 
mouthpiece and b) tests performed at 3-15 cm distance. Both graphs show measurement results with generation 2 

devices (y-axis) compared to an evidential breath analyzer (x-axis). 
 
The results of the human subject study are summarized in Figure 3. The correlation between active tests (undiluted, 
DF=1, graph 4 a)) is excellent with a correlation coefficient of 1.00, providing experimental support of the technical 
performance summarized in the previous subsection. 
 
As shown in Figure 3 b), the human tests performed at 3-15 cm distance exhibited much larger variations than the 
undiluted breath tests. In this graph, eq. (1) was used for calculation of BrAC. A striking feature is that the 
distribution is shifted upwards from the identity line. This can be understood from a systematic deviation between 
the end tidal value and the alveolar CO2 concentration [7, 11, 12]. The distribution has a funnel shape, increasing 
with concentration. This is a direct result of eq. (1) and the dominating variability of CO2et. Not shown in the 
presented graphs is that the sensor distance did not influence the distribution, despite the large variation from 3 to 15 
cm [11].      
 
In-vehicle test results 

A theoretical model was designed for simulation of relevant phenomena relating to in-vehicle air flow dynamics 
using finite element methodology (ANSYS). The model represented an idealization of a real-world occupant 
compartment geometry in order to enable the study of basic mechanisms and phenomena at moderate requirements 
of processing capacity and computing time. Figure 4 a) shows a simulated breath flow being deflected by a stronger 
guide flow passing to the left of the driver’s head.  The guide flow is attracting the breath flow, thus creating a 
possibility to control the flow direction. 
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Figure 4. a) Visualization of in-vehicle breath flow using FEM simulation (left). b)  Breath flow from driver 
phantom visualized by a mist of water droplets (right). 

 

The experimental setup shown in Figure 4 b) was designed to enable air flow patterns to be visualized using a driver 
phantom, providing a realistic breathing pattern. A mist of water droplets injected into the flow was used as an 
optical contrast medium. Both mouth and nose breathing could be simulated using this setup. 
 

The results of in-vehicle measurements using human subjects are summarized in Figure 5, showing graphs of 
measured EtOH concentration as a function of the dilution factor DF. A parabolic relationship between measured 
EtOH concentration and dilution is observed at given levels of BrAC, and is evident from eq. (1). Figure 5 a) also 
includes data of the range of dilution factors observed in a completely passive mode of operation. The in-vehicle 
tests were performed with volunteers instructed to control their exhalation either by nose or mouth. Data from the 
most favorable positions are included: Seat belt, sun shield, and steering column.  

 

(a)                                                                                          (b) 

Figure 5. Measured EtOH concentration as a function of dilution for various settings.  
a) Theoretical curves at different BrAC levels are superimposed with measured dilution data from various 

in-vehicle positions. The dashed line corresponds to the 3σ resolution.  
b) Basically the same graph as a) but with different scaling, and measured data (dots, see text).   
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Figure 5 b) includes experimental data from the sensor positions seat belt, steering column, and side door. The 
420 data points from 38 volunteers indicate that DF needs to be below 20-30 in order to obtain adequate 
resolution.  

DISCUSSION 
The automotive test results were positive for the majority of test cases conducted. Measures are now being taken to 
shut the remaining performance gaps concerning startup time and accuracy at extreme temperatures. This work is 
underway and is expected to provide overall fulfillment of the present specification [14, 15].  
 
The system performance in human subjects is adequate in view of the suggested two-step procedure, in which the 
first unobtrusive step is a provisional BrAC determination (Figure 1). The observed variability of contactless 
measurements can be understood from the corresponding variability between individuals of alveolar CO2 
concentration [7].  
 
The test results on unobtrusive in-vehicle determination indicated (Figure 4 a) that for the best sensor position in a 
vehicle setting, the seat belt position, typical dilution factors of 8-15 were observed by passive detection in several 
individuals, resulting in a BrAC resolution of 2-4% of the US legal limit. This observation is believed to constitute 
proof-of-principle for passive BrAC determination according to the scheme of Figure 1. However, the seat belt 
position is not considered suitable from an integration perspective. In other positions, the dilution is much larger. 

Besides truly passive detection the option of a directed breath from a distance to a sensor integrated in the vehicle, as 
depicted in Figure 2 c), should also be considered. It may be argued that this option is also unobtrusive to the sober 
driver, since it only takes 1-2 seconds of the driver’s attention, similar to pressing a button. This reflection 
notwithstanding, aspect (iii) related to vehicle integration remains as the most compelling technical challenge 
compared to (i) and (ii) (see subsection on basic system function) to the objective of unobtrusive breath alcohol 
determination. 

Several initiatives are underway to integrate breath alcohol sensor systems with other technologies, including the 
already mentioned DADSS program [3, 4], and the Drive Me project directed towards evaluation of new 
technologies for autonomous vehicles [16]. 

CONCLUSIONS 
The feasibility of unobtrusive breath alcohol determination in vehicles, and adequate performance of a sensor 
system based on infrared spectroscopy have been experimentally demonstrated. The alcohol sensing system may 
advantageously be integrated into vehicles, and may also be combined with other technologies including 
autonomous driving. 
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ABSTRACT 

Drowsy driving contributes towards up to 24% of crashes and near crashes observed; 886 fatal crashes per year 
can be attributed to drowsy, fatigued or sleeping drivers. Drowsiness mitigation technology is composed of a 
detection algorithm and a mitigation component. This paper is primarily concerned with the latter, specifically 
for a driving simulation study about mitigating drowsy driving. The study is part of NHTSA’s Driver 
Monitoring of Inattention and Impairment using Vehicle Equipment (DrIIVE) program. The detection 
algorithm incorporates time series probabilistic estimation using a Hidden Markov Model, so a drowsiness 
prediction at any time is dependent on a previous history of observations. Two mitigation methods are 
designed for testing in the simulation study. One is a three stage audio/visual alert that requires a driver 
response through a button press. The second is a binary haptic alert that uses a vibrating seat. Additionally, 
each mitigation will include three varying levels of sensitivity: a nominal model, an over-sensitive model, and 
an under-sensitive model. These variations will expose drivers to different numbers of false alarms while also 
potentially missing episodes of drowsiness. Various parameters in the detection algorithm were tested and the 
vote thresholds of two Random Forest models were selected for variation. It was observed how these 
parameters affected the output of the detection and mitigation system using previously collected drowsy 
driving data. Three specific levels were chosen as candidates for the experiment. It is hoped that the study will 
answer questions about how effective a mitigation system is at changing driving performance, whether drivers 
willfully ignore the mitigation, and how many alerts are too many. 
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INTRODUCTION 

The National Highway Traffic Safety Administration (NHTSA) estimates that 83,000 crashes per year and 886 
fatal crashes per year can be attributed to drowsy, fatigued, or sleeping drivers (NHTSA, 2011).  The 100-car 
naturalistic driving study found that drowsy driving contributed to 22% to 24% of crashes and near-crashes 
observed (Klauer, Dingus, Neale, Sudweeks, & Ramsey, 2006).  Other studies suggest that despite known 
dangers many drivers continue to drive drowsy and fall asleep behind the wheel (MacLean, Davies, & Thiele, 
2003; McCartt, Rohrbaugh, Hammer, & Fuller, 2000). Technology may be able to address some of these risks. 

Drowsiness mitigation technology consists of two subsystems, a drowsiness detection system and a driver 
feedback system. The drowsiness detection system or algorithm collects data from the driver or vehicle, 
processes this data with a detection algorithm, and makes predictions about the alertness of the driver. The 
feedback system activates when the detection system predicts that the driver is drowsy and alerts the driver in 
order to prevent a drowsiness related crash. With some exceptions, research on drowsiness mitigation 
technology has largely focused on the detection algorithm. This piece of the system is critical because it 
strongly influences drivers’ trust and reliance on the mitigation technology and constrains the design space of 
the feedback system (Balkin, Horrey, Graeber, Czeisler, & Dinges, 2011). 

Research on drowsiness detection algorithms can be differentiated by the input data, prediction algorithm, and 
ground truth definition of drowsiness. Input data typically consists of camera-based eye measures (Dinges & 
Grace, 1998; Grace et al., 1996; Ji, Zhu, & Lan, 2004), electric potential measures from the brain (Lal, Craig, 
Boord, Kirkup, & Nguyen, 2003; Lin et al., 2005; Wali, Murugappan, & Ahmmad, 2013), or driver input to the 
vehicle such as steering wheel angle (Krajewski & Sommer, 2009; McDonald, Lee, Schwarz, & Brown, 2013a; 
Sayed & Eskandarian, 2001). Prediction algorithms vary from simple thresholds (Dinges & Grace, 1998), to 
more complex graphical models (Ji et al., 2004). The ground truth definitions also vary between studies and 
range from general levels of drowsiness associated with lack of sleep (Sayed & Eskandarian, 2001; J. H. Yang, 
Tijerina, Pilutti, Coughlin, & Feron, 2009), to more episodic measures of drowsiness such as drowsiness-related 
lane departures (McDonald et al., 2013a). Recent research primarily focuses on innovations in the prediction 
algorithm dimension. One prominent development in this dimension is a transition from static prediction 
algorithms to time-based prediction algorithms (Ji, Lan, & Looney, 2006; G. Yang, Lin, & Bhattacharya, 2010; J. 
H. Yang et al., 2009). These time-based prediction algorithms allow predictions to account for well-understood 
temporal effects of drowsiness:  for example, a drowsy driver is likely to stay drowsy and an alert driver is 
likely to stay alert. Additionally, they can be built around previously non-temporal (or static) algorithms to 
improve predictions (Ji et al., 2006, 2004). The success of these algorithms and their strong basis in the theory 
of drowsy driving suggests that it could be helpful to enhance other non-temporal models by incorporating 
them into temporal frameworks. 

Mitigation systems are the critical link between the detection system and influencing driver behavior.  While 
the detection system aims to accurately assess driver state, the aim of the mitigation system is to present driver 
state information to the driver in a way that is likely to persuade the driver to make choices that improve 
safety.  This process involves the translation of the raw detection system outputs for use by the mitigation 
system.  These systems can theoretically take many forms, from a simple audible chime or visual icon to more 
complex displays that relay different levels of performance or instruction to the driver.  Although the same 
algorithm might be used across systems, the type of the interface will dictate the required adaptation of the raw 
data. 

The topic of this paper is the design of a mitigation system to provide feedback to the driver about the system’s 
perception of their state of drowsiness. The mitigation system should help the driver become more aware of 
their drowsiness. In the short term, it may help them to improve their driving performance; however, the 
ultimate desired effect would be to cause them to pause their trip and take a rest. 

There are several drowsiness alert systems on the market currently (see Figure 1). Many are binary alerts that 
display a coffee cup icon and play a chime when the alert is triggered. Some systems attempt to provide a more 
continuous, or at least multi-level discrete, scale of drowsiness to the driver. Some systems require the driver 
to press a button to acknowledge the alert.  



3 
 

   

Figure 1. Example Mitigation interfaces from Volvo, Mercedes-Benz and Ford 
 

PRIOR WORK 

The NHTSA DrIIVE program focuses on the detection and mitigation of driver impairment from drowsiness 
and distraction. Several models were generated in phase 1 of the DrIIVE program, including a Bayesian 
Network, a time-to-lane-crossing (TLC) model, and a Random Forest model based on steering wheel angle 
(McDonald, Lee, Schwarz, & Brown, 2013b). A Random Forest model that incorporates temporal steering 
information into a static algorithm was trained on drowsy lane departure data (2013a), (Brown, Lee, Schwarz, 
Fiorentino, & McDonald, 2014).  

 

Figure 2.  Example Time Series: ground truth markers and drowsiness HMM output 
 

This initial algorithm was then extended by placing the static steering algorithm into a temporal prediction 
framework and exploring the effect of this approach on the timeliness of the detection algorithm (Schwarz, 



4 
 

McDonald, Lee, & Brown, submitted). The enhancements produced a set of Random Forest (RF) models that 
were fed into a Hidden Markov Model (HMM) capable of capturing the heuristic that an awake driver is more 
likely to remain awake in the near future, while a drowsy driver is likely to remain drowsy. 

The Random Forest models were trained in the open source statistical software R (R Development Core Team, 
2009) using the caret package (Kuhn, 2008). Normally, a classification is inferred using an RF model by 
running all the decision trees and using the majority vote as the output.  However, if one keeps track of the 
vote count for each instance the model is run, then the vote count can be used as the continuous predictor in a 
Receiver Operator Characteristics (ROC) analysis. Then, an optimal threshold on the vote count may be 
computed from the ROC curve using Youden’s Index (Powers, 2007). An optimal set of RF models was 
produced using vote thresholds of 162 votes for the steering RF model and 151 votes for the pedals RF model, 
where all RF models had 500 decision trees. 

A Hidden Markov Model (HMM) was designed to include the effect of historical observations and accept 
inputs from the RF models, and was trained using the HMM library in R (Himmelmann, 2010). A regular time 
interval of six seconds is selected as the model frequency. Two pieces of evidence are provided, one from the 
steering RF classification, and the other from the pedal RF classification. The output of the HMM, shown in 
Figure 2 is compared to a threshold to classify each time sample as a drowsy or awake. The threshold value 
was selected from an ROC curve to be 0.74. The RF models along with the HMM complete the drowsiness 
detection algorithm. 

METHOD 

Two mitigation systems were designed for use as between subject conditions in a new drowsiness mitigation 
study. The first is a three stage audio/visual alert with driver interaction through a button. The second is a 
binary haptic alert that vibrates the driver’s seat. Three levels of the drowsiness detection system are included 
in the experimental design as a between-subjects dependent variable. The three levels will include a nominal 
design, a design that is more sensitive, and one that is less sensitive. These levels will expose drivers to 
different numbers of false alerts, while perhaps also failing to detect the drowsiness in some cases. 

MITIGATION DESCRIPTIONS 

The audio-visual alert is a three stage warning. The threshold value used to trigger each stage is the same for 
each stage. If drowsiness is detected while in the nominal state of no mitigation, then a stage 1 warning is 
issued. This warning is a white coffee cup icon with an OK button for driver acknowledgement (Figure 3a) and 
an audio chime that plays when the icon appears. Once the driver presses the button, the icon is removed. The 
mitigation will remain in stage 1 for a minimum period of time; and during that time the detection algorithm 
may remain in a classification of drowsy state or return to an awake state. If the detection algorithm 
classification returns to awake, then the mitigation will abate after a fixed delay.  However, if another drowsy 
episode is detected before the mitigation abates, or the drowsy state persists for 60 seconds, then the mitigation 
escalates to stage 2.  On entry into stage 2, a stage 2 warning is issued using the visual icon in Figure 3b along 
with an audio beep. This icon is removed once the driver acknowledges the warning with a button press. 
Exactly the same logic is applied during stage 2 until the mitigation either abates back to stage 1 or escalates to 
stage 3. A stage 3 alert consists of the icon in Figure 3c, and a repeated audio beep. There cannot be any more 
escalations from stage 3, but the warning may be reissued if the drowsy state persists or soon repeats. Only 
incremental escalations and abatements are allowed. This mitigation has the chance to capture the driver’s 
attention by varying the stimulus on repeated warnings; but it also has the potential to be a nuisance to a driver 
who is already self-aware or not drowsy. 

The haptic alert is a binary alert system that provides a counterpoint to the three stage alert. It also differs in 
modality by providing a haptic alert through seat vibration, thus making it a more subtle, and potentially less 
annoying, cue. The same logic for stage escalation is applied in the binary alert to either trigger the initial alert 
or repeat it after 60 seconds. Once the drowsy detection expires, the mitigation naturally abates back to the 
nominal driving state. 
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MITIGATION SENSITIVITY MANIPULATIONS 

A significant question addressed in this paper is:  how can we vary the sensitivity of the algorithm / mitigation 
system? Random Forest models are especially opaque and little intuition about why a given parameter set 
works is available to the designer. Hidden Markov models are slightly easier to intuit, but are nonetheless 
complicated. There are several choices that were considered, most of which were either discarded or found to 
not have a significant effect upon the final outcome of the classification and mitigation performance. The 
Random Forest models are considered first. 

 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3.  Visual Mitigation Icons: (a) stage 1 interactive, (b) stage 2 interactive, (c) stage 3 interactive 
 

Two Random Forest models are used in the drowsiness detection algorithm, one for steering and one for 
pedals. Each Random Forest is composed of 500 decision trees; and each decision tree may have on the order 
of 100 nodes. Therefore, it is not feasible to try to tune those parameters individually. One could think about a 
strategy of retraining new RF models with the intent of changing the sensitivity; but then there may be other 
performance differences between them that are confounded with sensitivity. The other parameter one can think 
about tuning is the voting threshold for output classification. Normally, RF models are majority rule, meaning 
that more than 250 trees in a 500 tree RF would have to agree to set a class output. This vote threshold number 
may be allowed to vary and we used it as a threshold variable in an ROC analysis in our prior modeling work. 
The lower the value of the vote threshold, the more trees potentially need to be run to gather up the required 
number of votes, thus potentially increasing the computational demand of the model by some small amount. 
For example, with a threshold of 100, one may have to evaluate as many of 400 of the trees to guarantee that 
there are not 100 votes for drowsiness. 

Hidden Markov Models have fewer parameters than RF models and they are more intuitive than trying to tune 
a decision tree. The state transition probabilities set the probability of an HMM changing state from awake to 
drowsy or vice-versa at any time step. The probabilities in each direction can be set independently. The 
emission probabilities set the chances that any of the observed variables of the HMM, or combinations thereof, 
indicate the value of the state. The state transition model is the base of the HMM with the prior probabilities, 
while the emission model conditions the state transitions with the presence of evidence. We estimated values 
for the emissions probabilities by counting the presence of RF model classification and their likelihood of 
correlating with a drowsy driving ground truth state. The final parameter that could be varied is the threshold 
we apply to the posterior probability, the output of the HMM, to set a final classification for the detection 
algorithm. 

We chose not to attempt to tune the emission probabilities, for essentially the same reason we did not tune each 
decision tree. It would change the characteristics of the model and defeat the purpose of the machine learning 
training routines that optimize model parameters. We experimented with varying the state transition 
probabilities, the effect of which is similar to that of changing a low pass filter cutoff frequency that is filtering 
the HMM output (Figure 2). A lower transition probability will produce a more filtered signal that has a longer 
rise (or fall) time. Ultimately, the effect of varying these probabilities, while measurable, did not effect a 
significant change in the algorithm output. 
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Similarly, we explored the final HMM threshold value. This value was obtained previously as the optimal 
operating point on an ROC curve obtained after a model optimization process conducted on the RF and HMM 
models. This parameter is the easiest to understand, effectively dividing Figure 2 into an upper and a lower 
region that corresponds to drowsy and awake predictions, respectively. Unfortunately, the variation of this last 
threshold has the least effect out of all the parameter tuning that was tried. This is likely because most state 
transitions changed the posterior probability all the way from zero to one and vice versa. The number of cases 
where a transition changed direction partway was fewer than one might have expected. In that situation, we 
can only shift the edges of the state transition by a few seconds by varying the output threshold. 

The parameters that had the greatest effect on the drowsiness detection algorithm were the vote thresholds of 
the two RF models. An RF model with a higher vote threshold simply requires more of its constituent decision 
trees to agree on the output classification. Setting this threshold above the majority value may be problematic 
because it may then be that neither class gathers enough votes to meet the threshold. Ten levels of parameters 
for the RF vote thresholds were set. Values for the Steer RF model are: {162, 170, 180, 190, 200, 210, 220, 
230, 240, 250}. Values for the Brake RF are: {151, 160, 170, 180, 190, 200, 210, 220, 230, 240}. The 
parameters are always varied together, not independently. Level one values correspond to the optimal threshold 
obtained in prior work to optimize the ROC curve indicators of model performance. The subsequent levels step 
up the values of each threshold until the steering RF value reaches majority rule. Notice that the relationship 
between the two values is essentially maintained through the levels such that the steer RF threshold is always 
greater than the brake RF. 

This particular range of parameters fits nicely with the goals of our model variation exercise. The optimal 
values gave the best performance when compared to the awake and drowsy ground truth data points; however, 
the majority of time history samples are not associated with any ground truth because there was no lane 
departure. Therefore, the algorithm performance at these points is difficult to judge. We did observe however, 
that many of these in-between points are classified as drowsy and thus contribute to the overall number of 
mitigation warnings. We would therefore consider this parameter set as being on the sensitive side. To make 
the models less sensitive, we wish to make it harder for the RF models to issue drowsy classifications, which 
means requiring more models to agree on drowsiness. Therefore we increase the values of the vote thresholds 
up to the majority rule value, but no further. 

The different levels of RF models were run on the DrIIVE Phase I drowsiness data with all other parts of the 
detection algorithm held constant. Some simple metrics were calculated on the detection / mitigation system in 
order to compare across levels. A mitigation was considered to be in a ‘correct’ stage at each ground truth data 
point if it was in stage 0 (no mitigation) at an awake point or in any stage of mitigation at a drowsy point. 

The system was designed to operate at speeds greater than 40 mph, so the percentage of time that the vehicle 
was traveling faster than this limit was calculated as a reference for other measures. A variable, timeAtSpeed, 
was calculated as the amount of time in the drive that the car was traveling above this limit. A variable, 
timeInMitigation, was calculated as the amount of time that the mitigation system was in any mitigation stage. 
Then a normalized measure was calculated as ܶ݅݉݁	݅݊	݊݋݅ݐܽ݃݅ݐ݅ܯ	ሺ%ሻ = 	 ݀݁݁݌ܵݐܣ݁݉݅ݐ݊݋݅ݐܽ݃݅ݐ݅ܯ݊ܫ݁݉݅ݐ 	× 100 

Confining ourselves to only those samples with ground truth data, we counted which of those points were in 
the ‘correct’ stage of mitigation, as described above. This may be expressed in an indicator variable, Ic, of 
zeros and ones of length N, where N is the number of ground truth points in a drive. The percentage of 
correctly mitigated ground truth points was then computed in each drive as ݕܿܽݎݑܿܿܣ	ሺ%ሻ = 	100ܰ 	෍ ஼ேଵܫ  

This coarse metric does not indicate whether a ground truth data point falls in the first or last part of a 
mitigation, nor which stage of mitigation is active, nor whether an incorrectly mitigated ground truth point 
falls just before or after a period of mitigation. The accuracy metric, together with the time-in-mitigation 
metric, provide an idea of how parametric variations affect the output of the detection / mitigation system, and 
create a tradeoff between sensitivity and accuracy. 
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RESULTS 

Ten levels of vote thresholds for the Steer RF and Pedals RF model were tested on the DrIIVE Phase I 
drowsiness data, which was all collected in unmitigated conditions. Both the three stage audio-visual 
mitigation as well as the binary haptic mitigation were run on each drive in the three conditions of that study: 
Day, Early Night, and Late Night. Since it was not possible to provide human interaction with the button 
response, an automatic button response was programmed after one second; therefore, the simulations do not 
account for unresponsive drivers. 

 

Figure 4.  Violin plot and linear fit of the percentage of time in a drive that the mitigation is active for the 
audio/visual alert mode 

 

The Time in Mitigation and Accuracy metrics are displayed for the three stage mitigation in Figure 4 and 
Figure 5, respectively. These figures show an overlay of a violin plot with a line fit, the latter with confidence 
intervals represented by a gray band. A violin plot shows information similar to a box plot, but shapes the sides 
of each ‘box’ according to the probability density of the sample points (Hintze & Nelson, 1998). The wider the 
shape is, the denser the points are at that location in the plot. The ggplot2 library (Wickhan, 2009) in R was 
used to generate the plots; and the plotting function was allowed to bin the horizontal axis from ten levels into 
just five bins, making the figure somewhat less dense and easier to comprehend.  

The violin plot in Figure 4 shows the density of samples of the Time in Mitigation measure decreases as the 
vote threshold increases. This result holds across all three conditions and is completely intuitive. As more 
votes are required for the RF models to issue drowsy classifications, it becomes more difficult for the 
algorithm to transition into the drowsy state; and less time is spent in all stages of mitigation. The time in 
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mitigation at level ten for the Day, Early Night, and Late Night conditions is approximately 5%, 10%, and 12% 
respectively. 

 

Figure 5.  Violin plot and linear fit of the percentage of ground truth points that are correctly mitigated for 
the audio/visual alert mode 

 

The violin plot in Figure 5 shows the density of samples of varying Accuracy as a function of the Steer RF 
vote threshold. The line fit serves to make clear the shift in the density of samples as the vote thresholds are 
increased. The accuracy in the Day condition actually rises as the RF models become more conservative. The 
explanation for this result is that almost all of the ground truth points in the Day conditions are awake points. 
Then it becomes clear that a simplistic approach of turning off the mitigation altogether would increase the 
accuracy in this condition to almost 100%. On the other hand, the accuracy is seen to drop for both night 
conditions as the vote threshold is increased, as expected. At the far end of the test, where vote thresholds for 
steering and pedals are 250 and 240 respectively, the estimated accuracy in the Day, Early Night, and Late 
Night conditions is 90%, 38%, and 30% respectively. 

A similar pattern of results was obtained for the binary haptic mitigation, though the haptic system had smaller 
overall values for the Time in Mitigation metric. The different logic of the binary mitigation as compared to 
the more complex three-stage system result in less time spent in mitigation. 

THREE SENSITIVITY LEVELS 

The drowsiness mitigation study will have Early Night and Late Night conditions, but will not include Day 
drives. However three levels of sensitivity will be designed for each of the two mitigation types. Previous work 
resulted in trained models and an ROC curve evaluation of the models to optimize a drowsiness detection 
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algorithm. This ‘optimal’ model corresponds to the level one parameter set described in this paper. As 
discussed earlier, that optimization only considered ground truth points and classifications on in-between 
points were not part of the evaluation. In reality, the in-between samples make up a majority of the data in 
most drives and therefore contribute significantly to the number of mitigation alerts. All three conditions were 
in some stage of mitigation over half the time, which is especially surprising for the Day condition. 

A commercial system would most likely condition the algorithm output on other factors such as time of day, 
driving style, traffic density, and perhaps other variables. Since we are not collecting additional Day drives, 
conditioning by day/night is not necessary at this time. Three mitigation models were selected for the two 
modalities with the purpose of obtaining a wide spread in the timeInMitigation and accuracy metrics. The 
starting point was to choose three target accuracy values. Those values then mapped to corresponding time in 
mitigation and RF model vote thresholds. The values selected for the three models are summarized in Table 1. 
These models are spaced far enough apart that they offer a clear distinction to the drivers who experience 
them. 

Table 1. Three levels of mitigation selected using Late Night data for audio/visual and haptic modes    

Level 
Steer RF Votes Pedal RF Votes Time in Mitigation (%) Accuracy (%) 

Visual Haptic Visual Haptic Visual Haptic Visual Haptic 

Over sensitive 170 162 160 151 63 40 75 70 

Nominal 190 175 180 165 50 38 63 63 

Under-sensitive 215 195 205 185 38 30 50 50 

 

CONCLUSIONS 

Two mitigation systems, a three stage audio/visual and a binary haptic, were designed to use the output of a 
previously designed drowsiness detection algorithm. Additionally, three levels of each system were obtained to 
provide a good range of system sensitivity to drowsiness. In this way, a range of false alarm rates will be 
generated from the study and questions about the effectiveness of the mitigation might be differentiated from 
questions about the nuisance factor of the mitigation alerts. 

The ultimate desired outcome for a drowsiness mitigation system is that the driver would realize their own 
impairment and pause the trip to rest. Such an outcome is not allowed for however in the protocol of the 
simulator experiment. On the other hand, a primary interest of the DrIIVE program is to study vehicle-based 
measures of impairment. Having determined that such measures are useful for classifying drowsiness, the data 
from the upcoming study may be used to test whether a mitigation system also causes detectable differences in 
driving performance as measured by vehicle-based sensors. 
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ABSTRACT 

 

Several studies show that up to one in four severe traffic accidents can be attributed to drowsiness. Drivers often 

over-estimate their fitness level or are not aware of the danger that always accompanies drowsy driving. 

Since associations like the NHTSA pointed to the relevance of this topic, more and more research has been 

conducted and in the meantime there is also a variety of commercial systems on the market to address this risk. 

In this paper, we do not aim to find new methods of detecting drowsiness of a driver. Our approach is rather to 

choose an established method and enhance it in a way that it not only performs well in a driving simulator but also 

in real world drives. 

The chosen drowsiness detection method is the observation of the steering wheel angle signal. It has been shown 

that the frequency of occurrence of a typical steering pattern, which can roughly be described as a deadband 

followed by a rather fast correction, is an indicator for the state of drowsiness of a driver. The advantage over other 

techniques like camera-based detection is that it can run in standard equipped cars. Thus it is available for the largest 

number of drivers and can thereby achieve the greatest effect on accident avoidance.  

We investigate the chosen detection method in real world drives and discuss which other effects not related to 

drowsiness can evoke the described steering pattern. We focus on environmental effects like crosswind and can 

show that those events may lead to an increase of the amount of steering patterns. Finally, we quantify the influence 

on drowsiness measures. The underlying database comprises more than two million kilometers of more than one 

thousand drivers, all real-world drives. 

Our evaluation shows that particularly on routes or in situations where those environmental influences accumulate, 

the drowsiness measure can be affected to an extent that leads to false triggering of the system. Therefore, we 

suggest measures that can be taken to reduce the influence of steering patterns that are not related to the driver’s 

drowsiness state.  

The aim of most drowsiness detection systems is to inform a driver when his state has reached a critical level and to 

motivate him to take appropriate measures. This presupposes confidence in the system. False warnings will 

negatively affect the credibility of the system. 

Our purpose is to show the importance of enabling this kind of system to recognize external influences, thus making 

detection more robust. We consider it very important to make such systems as reliable and credible as possible, as 

otherwise the driver will not take the advice the system will give him. Limiting the influence of external factors is a 

key to achieving this goal. 

 

INTRODUCTION 

 

Numerous reports name drowsiness and distraction as the cause of alarming numbers of accidents. The National 

Highway Traffic Safety Administration (2010) reports that in 2009 16% of all fatal crashes in the United States 

involved distracted driving. As regards drowsiness, Horne and Reyner (1995) found that 20% of all accidents on 

motorways in Southwest England to which the police was present were sleep-related. According to Langwieder et 

al. (1994), 24% of all fatal crashes in Bavaria, Germany, in 1991 happened because the driver fell asleep. NHTSA 

(Royal, 2002) reports 56,000 crashes annually to be related to drowsiness as mentioned by the police, resulting in 

1,550 fatalities. In the same report, NHTSA lists reasons why these numbers are presumed to be conservative. 

Furthermore, crashes due to drowsiness tend to have a severe outcome (Wang et al., 1996).  

The focus on the topic is still increasing. NHTSA names distracted and drowsy driving as one of the traffic safety 

problem areas (Goodwin et al., 2013) and the Euro NCAP 2020 Roadmap aims to reward manufacturers in the area 

of driver state monitoring in order to bring down the numbers of vehicles departing the road (European Car 

Assessment Programme, 2014). 
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A lot of research has been conducted in the field of drowsiness recognition and in the last years several commercial 

systems have become available on the market, using different methods. Dong et al. (2011) and Platho et al. (2013) 

give an overview of driver monitoring systems and also mention the commercial products of Ford, Mercedes-Benz, 

Volvo and VW. All those systems aim to suggest the driver to take a rest when he has reached a critical level. 

Many different algorithms were developed that analyze the driving performance, e.g. based on steering behaviour or 

lane keeping ability. These algorithms normally detect drowsiness if the driver shows an unusal driving behaviour 

(e.g. leaving the lane too often) or if the driving behaviour changes significantly from the beginning (e.g. lane 

keeping ability decreases). 

 

A problem of methods that use driving performance as criteria for drowsiness detection is that only the reaction of 

the driver can be analyzed, not the reason for certain driving manoeuvers. Attwood  (2014) mentions that systems, 

though they work in driving simulators, may fail on real roads, as they are not able to detect what the driver is 

responding to, considering environmental characteristics related to road, traffic and weather.  

 

In the present paper we discuss which environmental characteristics may have an impact on driver monitoring 

systems. In detail, the influence of crosswind and road disturbances is analyzed and it is estimated to what extent 

those events have an impact on drowsiness recognition. Finally it is shown how these external factors are taken into 

account in the system under consideration.  

The following evaluation is based on the steering wheel angle signal as the main information source. The main 

advantage of this method is that no special sensor, e.g. lane detection or driver monitoring camera, is needed. The 

steering wheel angle signal is part of the standard equipment of present-day cars. By this means, it is possible to 

integrate the drowsiness detection as a standard feature and thus reach a high number of drivers.  

 

APPROACH 

 

Steering wheel angle based drowsiness detection 

Several studies investigating the use of the steering wheel angle signal for drowsiness detection have been 

carried out. Dingus et al. (1987) found that the number of steering wheel velocities over 150deg/s is an 

indicator for drowsiness. Bouchner et al. (2006) show a positive correlation of the ratio of fast and slow 

steering corrections with drowsiness. 

 

A combination of slow and fast steering velocities is also used in this study. It is based on the Mercedes-Benz 

Attention Assist, which is a system that detects drowsiness and long-term distraction. Both kinds of driving 

impairment affect the steering behavior in a similar way. The steering pattern we evaluate consists of a 

deadband (phase without or with very slow steering) and a subsequent fast steering correction. Friedrichs and 

Yang (2010) show that this pattern correlates with drowsiness.  

In our experience, steering velocities differ widely between drivers. Therefore, several thresholds in the 

algorithm are adapted continuously during the drive and according to the behavior in the first minutes of a 

drive, when the driver is presumed to be rather awake. 

The accumulated steering pattern is the basis for the drowsiness measure. Figure 1 shows other factors that are 

taken into account to make the system more robust and useable in real road environment. 
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Figure1.  Features of the Mercedes-Benz Attention Assist. 

Situations potentially provoking steering patterns 

Friedrichs et al. (2011) identified external influences on the driving behavior. We refer to the factors listed in 

that study and cluster them as shown below.  

     Gaze direction, distraction, vehicle operation.   Factors describing different kinds of driver action. These 

include for example eating or drinking, which can lead to abnormal steering behavior as the driver does not 

operate the vehicle with both hands. It may also be the driver not keeping his eyes on the road because he is 

attending to his children on the back seat or reading messages on his smartphone. The steering patterns arising 

from these actions can be classified as indicators of distraction and are thus treated by the system in the same 

way as steering patterns evoked by drowsiness. Vehicle operations on the other hand are part of the driving 

task. They can be detected by the system and the related steering patterns can be filtered out.  

     Vehicle type/motorization, posture.   Influences that can be summarized as characteristics of the vehicle 

and  the driver. A key issue of these factors is that they normally do not change during a drive. Hence, adaptive 

systems are able to minimize the influence. 

     Rain/fog/snow, traffic density, lane width/-number, speed, curvature.   Description of the driving 

situation. An impact on the driving behavior is probable. Those situations are usually of longer duration. Some 

of these situations can easily be detected with standard sensors, e.g. speed or curvature. Others are more 

complicated to be analyzed online, e.g. traffic density. Nevertheless, as the factors are usually of longer 

duration, adaptive algorithms can react on the change in an adequate time. 

     Road condition, road bumps, crosswind, warping.   Single, strong events with sudden occurrence that 

may have immediate impact on the driving behavior. Crosswind often occurs unexpectedly, laterally displaces 

the vehicle and thus requires a fast counter-steering. Road bumps, warping or potholes can also lead to 

unintentional steering corrections. Steering corrections that potentially arise from these environmental 

influences are neither related to drowsiness nor to distraction and should therefore not be considered for driver 

state monitoring. 

In this study, we concentrate on the environmental events and investigate the influence of crosswind and road 

irregularities (road bumps, potholes) in detail. Friedrichs et al. (2011) conducted special drives for their 

evaluation in order to keep the dimension of the influences as small as possible. In the following evaluation 

real road data from naturalistic driving is used. Some restrictions were made on speed range a nd rated 
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drowsiness. Therefore, a much larger number of drives are part of the evaluation and the study of Friedrichs et 

al. (2011) is extended towards real driving situations. 

Recognition of environmental influences 

A prerequisite for all further evaluation is the ability to detect the presence of environmental influences. The 

detection of potholes and road bumps is based on an algorithm that looks for characteristics in the rotational 

speed of the wheels. The occurrence of crosswind is detected by comparing the steering angle, which provides 

information regarding the driver’s intention, to the lateral acceleration, which supplies the actual lateral 

vehicle movement. This approach of crosswind detection also includes the recognition of road warping. Often 

a mixture of road bumps and warping occurs, which means that the detection of crosswind, warping and road 

bumps is not always separable. Hence, some events are recognized by both algorithms. All signals mentioned 

are available in standard equipped cars. 

The algorithms described have been extensively proven in real world drives. For the following evaluations, the 

results of those algorithms have been used as labels for the presence of environmental influences.  

 

EVALUATION 

 

Underlying Database 

All data used comes from naturalistic drives. Driving simulator data is not included. The database comprises 

more than two million kilometers conducted by more than one thousand drivers. Self -rating of driver 

drowsiness is available for each drive. This rating has been conducted according to the Karolinska Sleepiness 

Scale (KSS) (Âkerstedt & Gillberg, 1990). Every single drive has undergone a validation process to make sure 

quality standards like consistent values of the KSS-rating are fulfilled. All drives come from Mercedes-Benz 

cars, but have been conducted in different models from the A-Class (compact car) to the S-Class (luxury large 

car). 

Evaluation of steering behavior 

Prior to the investigation of the occurrence of steering patterns, a more general look at the steering behavior 

was taken. Steering velocities were explored regarding the influence of crosswind or road bumps.  

As there are significant differences in steering behavior between individuals the analysis was conducted 

separately for single drivers. From the entire database, the ten drivers with the largest amount of recorded data 

were selected. Since Friedrichs et al. (2011) have shown that speed has a strong impact on the steering 

velocities, distributions of this signal in different speed ranges were compared for single drivers. Afterwards, 

the speed range under consideration was limited to velocities between 100km/h and 200km/h, as the signal 

values vary more at lower speeds. In addition, only parts of the drives were considered in which the driver was 

awake and alert.  

For each drive of the ten selected drivers the ratio of the presence of crosswind to the duration of the whole 

drive in the considered speed range was calculated. The lower quartile 𝑄1and the upper quartile  
𝑄3 of this ratio were then used for each driver to group his measurements into rather smooth drives (group 1) 

and drives under windy conditions (group 2). The same was done for proportions of the presence of road 

bumps and warping. Accordingly, group 1 comprises smooth drives and group 2 drives on roads with frequent 

disturbances. 

Subsequently, mean (mean) and variance (var) of the steering wheel velocity (swv) of each group of drives was 

calculated. 

Table 1 shows the results for the crosswind comparison. The calculated ratios are defined according to Eqs. (1-

2). 

 

     𝑟𝑎𝑡𝑖𝑜 𝑚𝑒𝑎𝑛 =
𝑚𝑒𝑎𝑛(𝑠𝑤𝑣)𝑔𝑟𝑜𝑢𝑝2

𝑚𝑒𝑎𝑛(𝑠𝑤𝑣)𝑔𝑟𝑜𝑢𝑝1
              (1) 
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        𝑟𝑎𝑡𝑖𝑜 𝑣𝑎𝑟 =
𝑣𝑎𝑟(𝑠𝑤𝑣)𝑔𝑟𝑜𝑢𝑝2

𝑣𝑎𝑟(𝑠𝑤𝑣)𝑔𝑟𝑜𝑢𝑝1
             (2) 

 

From the values in 𝑄1 and 𝑄3 it can be seen how much crosswind was present in group 1 and group 2. The 

interquartile range IQR shows how strong the two groups differ in their amount of crosswind. 

It can be seen from the table that driver A sticks out, having the highest ratio mean and ratio var, which means 

that the mean value of his steering velocity is higher for drives under windy conditions while also the 

distribution is spread more widely. In comparison, for driver E both ratios are still greater than one but with 

much smaller values. Hence, this driver also has higher steering velocities with a higher variance for his drives 

of group 2, but the effect is less marked than for driver A. A look at the quartiles gives an explanation for this 

difference. The value of 𝑄3, which is the threshold for drives under windy conditions, is much higher for driver 

A than for driver E, while 𝑄1 is the same for both drivers. Thus, data from more windy conditions is existent 

for driver A than it is for driver E, which results in a higher effect on the steering velocities. 

In summary, for all drivers the mean value and the variance of swv is higher for drives of group 2 than  

group 1. A look at the individual thresholds 𝑄1 and 𝑄3 and the IQR shows that this effect is stronger for 

individuals for which a greater difference in the ratio of crosswind occurrence is present. Taken together, these 

results reinforce the expectation that higher steering velocities occur with environmental disturbances.  

Table1. 

Comparison of steering velocity mean and variance for drives with different ratios of crosswind 

occurrence.    

 

Driver 

data 

selection 

number 

of 

drives  

evaluated 

time 

[min] 

mean(swv) 

[°/s] 

var(swv) 

[°/s] 

ratio 

mean 

ratio 

var 

  
𝑸𝟏 𝑸𝟑 IQR 

A Group 1 79 6369 1.00 2.17 
2.84 10.06 0.03 0.13 0.10 

 
Group 2 79 4420 2.84 21.79 

B Group 1 44 3608 1.44 4.04 
1.41 1.92 0.03 0.10 0.07 

 
Group 2 44 2751 2.04 7.75 

C Group 1 43 3879 1.38 3.18 
2.01 3.18 0.03 0.18 0.15 

 
Group 2 43 2234 2.78 10.12 

D Group 1 87 7276 1.72 4.12 
1.93 4.51 0.03 0.11 0.08 

 
Group 2 87 4668 3.33 18.56 

E Group 1 37 2942 1.27 2.86 
1.18 1.22 0.03 0.07 0.04 

 
Group 2 37 2923 1.51 3.48 

F Group 1 39 2766 1.68 4.37 
1.19 1.46 0.02 0.04 0.02 

 
Group 2 39 2832 2.01 6.38 

G Group 1 44 4110 1.09 1.94 
1.19 1.48 0.02 0.06 0.04 

 
Group 2 44 2636 1.29 2.88 

H Group 1 47 3203 1.22 2.72 
1.27 1.53 0.03 0.09 0.06 

 
Group 2 47 3017 1.54 4.14 

I Group 1 29 1768 1.28 2.64 
1.22 1.42 0.02 0.06 0.04 

 
Group 2 29 2335 1.57 3.75 

J Group 1 36 3872 1.04 1.81 
1.27 1.63 0.02 0.07 0.05 

 
Group 2 36 2346 1.32 2.95 

 

The same procedure was applied for the presence of road disturbances. The result is presented in Table 2. 

Though not as definitive as for crosswind, the findings are the same. For all drivers, both mean and variance of 

the steering velocity are higher for data of group 2, which are the drives with a high amount of road 

disturbances. The tendency of a higher portion of road irregular ities leading to higher mean values and higher 

variance of the steering wheel velocity can also be observed: driver I has the smallest IQR, which means the 
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difference of the ratio of road disturbance occurrence between his drives in group 1 and group 2 is smaller 

than for the other drivers. This explains why the mean steering velocity differs less between group 1 and group 

2 than it does for example for driver D, whose drives in group 2 feature a larger ratio of road irregularities.  

Table2. 

Comparison of steering velocity mean and variance for drives with different ratios of road bumps 

occurrence.    

 

Driver 

data 

selection 

number 

of 

drives  

evaluated 

time 

[min] 

mean(swv) 

[°/s] 

var(swv) 

[°/s] 

ratio 

mean 

ratio 

var 

  
𝑸𝟏 𝑸𝟑 IQR 

A Group 1 79 6701 1.01 2.15 
2.47 8.46 0.03 0.18 0.15 

 
Group 2 79 5487 2.51 18.22 

B Group 1 44 3040 1.53 4.20 
1.43 2.06 0.03 0.13 0.10 

 
Group 2 44 2464 2.19 8.66 

C Group 1 43 3849 1.62 3.98 
1.50 2.14 0.04 0.23 0.19 

 
Group 2 43 2504 2.42 8.54 

D Group 1 87 6853 1.82 4.47 
1.65 3.59 0.03 0.14 0.11 

 
Group 2 87 5824 3.00 16.04 

E Group 1 37 2991 1.27 2.89 
1.18 1.24 0.07 0.18 0.11 

 
Group 2 37 2875 1.50 3.60 

F Group 1 39 3068 1.76 5.01 
1.01 1.07 0.04 0.10 0.06 

 
Group 2 39 2315 1.78 5.35 

G Group 1 44 3762 1.05 1.94 
1.22 1.40 0.02 0.10 0.08 

 
Group 2 44 2160 1.28 2.71 

H Group 1 47 3542 1.33 3.28 
1.10 1.05 0.02 0.10 0.08 

 
Group 2 47 3155 1.47 3.45 

I Group 1 29 2163 1.37 3.04 
1.06 1.14 0.02 0.08 0.06 

 
Group 2 29 1859 1.46 3.45 

J Group 1 36 3647 1.05 1.92 
1.11 1.19 0.03 0.09 0.06 

 
Group 2 36 3382 1.17 2.28 

 

Evaluation of the occurrence of steering patterns 

To find out whether there are peculiarities in the number of steering patterns with the presence of crosswind, 

all time instances of onsets of crosswind in the speed range 60-200km/h were identified for 11,604 drives. 

Afterwards a time range of ten seconds before and ten seconds after those time instances was investigated for 

steering patterns. 

Figure 2 provides the cumulated result for all time instances in which crosswind was detected. Zero on the time 

axis marks the beginning of crosswind. As the duration differs, the red vertical line marks the median of the 

end of the detected crosswind. The number of steering patterns have been counted and plotted at their instant 

of occurrence, relative to the beginning of crosswind and normalized with the number of crosswind  events. As 

can be seen, in general the number of steering patterns moves around a certain level. After the onset of 

crosswind, a very strong rise can be observed. The subsequent lower amount is attributable to the violation of 

the deadband criteria caused by the counter-steering. It is apparent from this data that more steering corrections 

are produced under the influence of crosswind. 
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Figure2.  Histogram of steering patterns around crosswind events.  

The same procedure was applied for road surface irregularities. The results obtained from 11,638 drives are 

shown in Figure 3. The observation is the same as for crosswind. The number of steering patterns varies little 

around a certain level and increases strongly when road bumps occur.  It is thus confirmed that road 

disturbances can lead to steering corrections. 

 

Figure3.  Histogram of steering patterns around road disturbances. 
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Quantification of influence on drowsiness detection 

The previous evaluation proofed that environmental characteristics can evoke steering patterns. In the next step 

the dimension of the influence on a possible drowsiness measure was estimated. Based on this final evaluation 

it could be determined whether environmental influences present a severe problem or if effects are minor and 

can be neglected. 

This estimation was performed by calculating the factor by which the number of steering corrections increases 

if environmentally influenced ones are taken into account. Only data was used, in which the driven speed lay 

for at least 30min in the range of 60 to 200km/h. This led to 6075 evaluable drives. For each d rive, the ratio of 

the amount of steering corrections that were detected during the presence of crosswind to the amount of 

steering patterns that occurred when no environmental disturbances were present was calculated. The result 

shows by which factor the number of steering patterns would increase if those evoked by crosswind were 

ignored. It also represents an estimation of how much a drowsiness measure, based only on a summation of 

steering patterns, would be affected. 

The same principle was applied for the computation of the increase of steering patterns as a result of road 

disturbances. Figure 4 presents the distributions of the results for both kinds of environmental influences in a 

boxplot. A factor of increase of one means that the number of steering patterns would double by taking into 

account the environmental disturbance-evoked ones. For a better readability, only values up to 1.5 are shown. 

This was done due to some striking outliers, which may occur for special driving conditions, e.g. extraordinary 

windy conditions. 

 
 

Figure4.  Increase of number of steering patterns with environmental disturbances.  

  

The median for the factor of increase on account of crosswind lies at a value of 0.215, due to road irregularities 

at 0.258. As explained before, the crosswind recognition and the detection of road bumps may sometimes be 

effective for the same events, thus it has not to be assumed that both factors of increase would add up. But , for 

half of the drives in the existing database, a possible drowsiness measure increases by more than 20% even 

regarding only one of the influences, which may indeed lead to false warnings. The problem is less severe for 

drives under smooth conditions and more severe if more disturbances occur. Figure 5 shows that the rise of 

steering patterns and the relative amount of crosswind is highly correlated, as can be expected. The same 

observation can be made for road irregularities, as shown in Figure 6. Especially for drives under more 

extreme conditions, measures have to be taken to increase the robustness of the drowsiness recognition system 

to prevent false alarms. 
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Figure5.  Relation between amount of crosswind and 

increase of steering patterns. 

 
Figure6.  Relation between amount of road 

disturbances and increase of steering patterns. 

 

PROPOSAL OF MEASURES 

 

The evaluations show that the impact of environmental influences on steering pattern based drowsiness 

detection systems is too strong to be neglected. In the following we propose measures that increase the 

robustness as they are implemented in the Mercedes-Benz Attention Assist system.   

Masking 

In the first step, steering corrections evoked from events like crosswind or road bumps are left out of the 

estimation of drowsiness. A prerequisite for this is the possibility of recognizing such disturbing influences. 

Not to consider those steering patterns means that the system cannot evaluate the driver’s steering behavior 

during the presence of the environmental disturbance. This leads to some kind of system inactivity. Inactivity 

due to environmental influences is of short duration. Figure 2 and Figure 3 depict the median of the duration of 

disturbing environmental events, about 3.5s and 2s respectively. In our database, crosswind led to 4.3% of 

overall system inactivity, while masking due to road disturbances concerned 6.2% of all data. Both values were 

obtained from data in the speed range 60-200km/h. Hence, the inactive periods have only minor influence on 

the overall system performance. 

If the system is inactive for a long time, we recommend letting the driver know that he cannot expect it to work 

without restrictions. This is for example the case if the system works only in a certain speed range. 

Transparency, such as displaying inactivity, can lead to better understanding and thus more trust in the system.  

Adaption 

While masking is effective for determined events, another measure is needed for all non-specific influences 

that cannot be detected as single environmental events can be. Increased robustness can also be achieved by 

making algorithms adaptive, not only to the driver but also to changes in the driving situation that cannot be 

attributed to special events. For example thresholds for the recognition of steering patterns should adapt during 

the whole drive. 

 

CONCLUSIONS 

 

The purpose of the current study was to determine the necessity of making driving-performance based driver 

state monitoring systems, especially those that rely on steering patterns, robust against environmental 

influences. The results of the investigations have shown that environmental influences have a significant 
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impact on the steering behavior and can lead to steering patterns that are not related to drowsiness or 

distraction. 

It has also been found that the number of unwanted steering patterns cannot be disregarded. The influence on 

the drowsiness measure is significant, especially with higher presence of disturbances. The implementation of 

possibilities to detect environmental events and ignore the consequent steering corrections helps to achieve 

better performance of such systems in real road scenarios. The performance can be further improved by 

designing adaptive algorithms, e.g. by fitting certain parameters to the special driving situation.  

The effectiveness of drowsiness detection systems that are limited to give advice depends on the dr iver’s 

confidence. An increase in the drowsiness measure because of environmental influences can lead to false 

triggering of the system and thus to the driver not taking it seriously. 

The presented method of evaluating influence of certain events on drowsiness detection algorithms can also be 

used to study the effect of other events, e.g. certain vehicle operations. It allows estimating the s cale of the 

effect and helps deriving measures to decrease the negative consequences on the system performance. The 

method shows especially an efficient way to extract this information in a huge amount of existing real road 

data. 
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ABSTRACT 
 
A 2009 study by the National Highway Traffic Safety Administration identified certain medical conditions as 
contributing factors in crash causation (Hanna 2009). It was found that about 1.3% of all crashes included in the 
National Motor Vehicle Crash Causation Survey (NMVCCS) were precipitated by driver reported medical 
emergencies and 84% of the drivers in crashes precipitated by medical emergencies experienced seizures ( epileptic 
and others), blackouts (non-diabetic), and diabetic reaction prior to the crashes. Drivers who had crashes precipitated 
by medical emergencies were more likely to sustain severe injury (28% for incapacitating injury and death for 
crashes with medical emergency; 11% for crashes without medical emergency). Thus, the premise exists that there 
may be benefit to identify the driver (and other occupants) of the vehicle as well as monitor their current health 
status through passive or active methods.  This monitoring could take into account chronic conditions (such as bone 
mineral density) through driver input or through initial vehicle startup measurements which could be used to provide 
optimal comfort or safety system performance. Additional information about the driver’s health or behavioral 
conditions could be interpreted from blood pressure, heart and respiration rate, blood glucose levels and other 
physiological parameters and could lead to vehicle intervention in driving and/or alert EMS or police of the 
impending health condition that may affect driving or cause a crash. This monitoring could be done in many ways 
such as the recent rapid growth in wearable technology with the ability to pair to apps. 
 
This paper will discuss issues related to driver behavioral and health monitoring and review potential technologies 
for monitoring and as well as methods for biometric identification.  Recent publications on driver crash risk due to 
chronic and acute health conditions will be summarized. Finally, applications that may be associated with the 
monitoring will be discussed.    
 
INTRODUCTION 
 
Driver state is an important factor affecting safe driving behavior. Detection and intervention of drowsiness, 
distraction and drunkenness have been studied by many up to now. The decline of an individual driver’s health is 
another potential cause for a significant proportion of crashes. Researchers as early as 1967 recognized medical 
impairment as a possible contributor to traffic “accidents” (Waller, 1967).  In his report, Waller outlined seven 
criteria that should be adhered to in a study of this subject, including “there must be a reasonable mechanism for 
identifying most of the high risk persons, and for doing so early enough to avoid a substantial portion of their 
accident experience”.  In a recently released report, the National Highway Traffic Safety Administration reviewed 
crashes from the National Motor Vehicle Crash Causation Survey (NMVCCS)  to determine the “critical reason, 
which is the last event in the crash causal chain, and concluded that driver was that reason for 94% of crashes in that 
nationally represented survey (NHTSA, 2015). Of those 94% of crashes (representing over 2 million crashes), seven 
percent, or 145,000 crashes were attributed to a driver “non-performance error”, which could be drowsiness or an 
acute medical condition. Using the same data set, Hanna (2009) found that 1.3% of all crashes involving light 
passenger vehicles in NMVCCS were precipitated by a driver’s medical emergency and 84% of the drivers in 
crashes precipitated by medical emergencies had experienced seizures (related to epilepsy and other conditions), 
blackouts (non-diabetic), and diabetic reaction prior to the crashes (Figure 1). Hanna found that the drivers who had 
crashes precipitated by medical emergencies were more likely to be more severely injured (i.e. 28% suffered 
incapacitating injury and death in crashes with a medical emergency compared to 11% in crashes without medical 
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emergency). Although the ratio of the crashes related to acute medical emergencies was small in the study, there 
were many other disease-related cognitive and psychomotor impairments (chronic) that may have increased the risk 
of crash. The Federal Motor Carrier Safety Administration (FMCSA) commissioned a series of studies to determine 
risk of motor vehicle crash for a variety of medical disorders based on reports and medical expert panel opinions 
provided by) (Table 1, FMCSA, 2007-2011). The table shows a statistically significant increased risk for a crash 
based on a driver having one of several disorders. Obstructive sleep apnea (OSA) is shown to have the highest 
relative risk (1.30-5.72). Another general consideration is that some diseases such as type II diabetes, cardiovascular 
disease, mild cognitive impairment (MCI) and Alzheimer’s disease are associated with aging. Now that the aging 
population is growing rapidly in the US, crash rates of occupants with those diseases may see increases despite the 
recent report by the Insurance Institute for Highway Safety (IIHS) indicating that fatal crash involvement rates of 
older drivers were decreasing faster than those of younger drivers (IIHS Status Report, 2014). NHTSA’s 5-year plan 
for traffic safety for older people (NHTSA, 2013) also highlights older drivers’ risk in association with increased 
medical problems. 
 
Advances in vehicle electronics have made it possible for drivers and passengers to customize their driving 
experience in many ways. Personalized settings for seat position, as well as heating/cooling/ventilation and 
entertainment (separated for drivers and passengers) have been available for many years. Recent technological 
progress in diversity, sensitivity, data capacity and miniaturization of biometric and biomedical instrumentation 
sensors and devices are enabling the general public to have more real-time access to personal health status as well as 
enjoy more security for their personal electronic devices.  Recent development has resulted in devices that can be 
embedded anywhere such as clothes, wristbands, watches, vehicle interiors, etc. to detect and report medical 
information such as body temperature, heart, respiration and perspiration rates, blood glucose and oxygenation 
levels, and other physiological functions. This data combined with user identification through recognition of 
fingerprints, iris, facial and/or voice inputs can provide a rapid analysis of a person’s state of health. The availability 
and use of this information has implications in many markets and significant potential to increase driving comfort 
and safety when embedded into appropriate algorithms related to vehicle design and performance.  For example, a 
vehicle that senses that the driver has an elevated body temperature and has increased his/her respiration rate 
significantly may automatically open windows or increase interior ventilation to improve comfort.  Also, providing 
input to the vehicle that the driver is 75 years old and thus has reduced bone mineral density, the vehicle may adjust 
restraint system parameters to optimize occupant  protection in the event of a crash.  The same vehicle system could 
also forward the driver’s vital information to first responders and other health professionals even before they 
reached the scene of the crash.  

 

 
 

Figure 1 . Type of medical conditions which precipitated crashes (Hanna, 2009). 
 
 
This paper will present the current state of passive personal identification and monitoring of a person’s health status, 
as well as the expected developments of such systems in the future. A discussion of how these devices could 
influence vehicle comfort and safety will be provided through a summary of the technology available or in 
development, the challenges of integrating the devices to the vehicle, the potential use, accuracy, standardization and 
privacy of data as well as other policy implications of this technology. Practical examples will be given to exemplify 
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the market readiness of technology and the potential for diversification of products and applications and their  
breadth and depth.  
 
HEALTH CONDITIONS THAT MAY AFFECT DRIVING 

Medical conditions are generally divided into two categories, chronic and acute problems. Some diseases have either 
chronic or acute problems and some have both. Effective in-vehicle interventions for these two aspects are different. 
The driver is at extremely high risk of crash in the case of acute health decline which shows distinctive physiological 
and behavioral changes. An in-vehicle system that detects a decline and controls the vehicle for an unresponsive 
driver may help to  to avoid a crash. On the other hand, chronic health problems develop slowly and degrade 
cognitive and behavioral performance of the driver over time, resulting in higher general risk of crash. In-vehicle 
systems that increase the safety margin of the vehicle based on individual’s driving ability may minimize the 
increased risk. The following discussion describes medical conditions that may affect driving. 
 

Table 1. 
Summary of motor vehicle crash risk for various medical disorders (FMCSA, various reports 2007-2011, 

Rizzo, 2011) 
Medical Condition Relative Risk (95% Confidence Interval) 

Cardiovascular Disease 1.43 ( 1.11-1.84) 
Diabetes Mellitus 1.28 ( 1.12-1.47) 

Obstructive Sleep Apnea 1.30-5.72 (pooled studies) 
Seizure Disorders 1.13-2.16 (pooled studies) 

Traumatic Brain Injury 1.32 (0.77-2.25) 
 

Diabetes 

The likelihood that a person has diabetes (type II) increases with age. Wild et al., (2004) estimated that the number 
of people over 65 years old with diabetes in developed countries will increase by 80% between 2000-2030 and the 
total number of people over the age of 46 with diabetes will be nearly 80 million people by 2030. An acute risk 
factor for driving is hypoglycemia (it can lead to coma) which can be caused mainly by insulin-dependent Type 1 
diabetes, whereas the chronic risk factors for driving are neuropathy (decreased sensation at feet and hands), 
retinopathy (vision loss), and encephalopathy (cognitive decline), all of which can be caused by both Type 1 and 
Type II diabetes (Rizzo,2011). However, scientific evidence for drivers with diabetes being at greater risk for 
crashes is not conclusive. Tregear et al. (2007) reviewed and conducted meta-analysis of thirteen studies, comparing 
crash risk among drivers with diabetes to drivers without diabetes, and found that the risk for crash among drivers 
with diabetes was 19% greater than the risk among drivers without diabetes (within the range published by FMCSA 
in Table 1). On the other hand, Tregear et al. found no statistically significant evidence to suggest that insulin-
treated individuals are at higher risk for crash than individuals with diabetes not being treated with insulin. It seems 
that diabetes increases the crash risk but contributions from the acute symptoms and the chronic symptoms to the 
increased risk are not yet known. The American Diabetes Association (ADA) states that diabetes management and 
education of both patients and health care professionals is the important intervention to the driving risk due to 
hypoglycemia (American Diabetes Association, 2012).  
 
Obstructive sleep apnea (OSA) 

There is strong evidence that the highest relative risk of motor vehicle crash is for OSA, ranging between 1.30 and 
5.72 (FMCSA, 2007, Table 1). There is evidence that OSA affects a significant portion of the population regardless 
whether it is diagnosed or undiagnosed. Hiestand et al. (2006) conducted a telephone interview of 1506 US adults 
using the Berlin questionnaire and found that 26% of respondents met the criteria indicating a high risk of OSA. 
NHTSA estimated that 1.4% of total crashes and 1.75% of fatal crashes were related to sleepiness (NHTSA, 1985). 
However, Leger (1994) suggested that NHTSA’s estimation was underestimated and provided a new estimation of 
sleep-related crash rates as 41.6% of total crashes and 36.1% of fatal crashes. Because of potential under-reporting 
and inability to determine post-mortem that drowsiness or micro-sleep episodes contributed to the crash, there is no 
clear-cut estimation of crash rate related to OSA. However, considering the high risk factors which were estimated 
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in strictly controlled driving simulator studies, OSA should be one of the conditions that can contribute to a risk of a  
vehicle crash. 
 
Another important aspect of OSA is the fact that the disease remains undiagnosed in many individuals. Hiestand et 
al. (2006) concluded that the prevalence of OSA in the US was estimated to be between 5% and 10%, but only 1 in 
10 of those with OSA were adequately diagnosed and screened for Continuous Positive Airway Pressure (CPAP) 
treatment. Untreated OSA can cause daytime somnolence, cognitive impairment, loss in work productivity with a 
typical symptom of microsleep and increase risk of motor vehicle crashes. It should be also noted that some sleepy 
drivers are not aware of their impaired status, possibly because of related cognitive impairment of an altered frame 
of reference for fatigue (Rizzo, 2011). 
 
Effects of OSA on driving performance have been investigated in driving simulator experiments by some 
researchers. It was found by Paul at al. (2005) and Boyle et al. (2008) that untreated OSA patients showed greater 
variation in steering, lane position and TLC (Time-to-Lane-Crossing) during micro-sleep episodes, and degree of 
driving performance decrement was correlated with microsleep duration, particularly on curved roads. Risser and 
Ware (1999) found that untreated OSA patients demonstrated increased lane position variability and road departure 
incident which were positively correlated with frequency and duration of attention lapses (sleeps). Drowsy driver 
detection and alert systems are commercially available now. However, it remains unknown to what extent the 
current technology detects the critical state of drivers with OSA featured by frequent occurrence of micro-sleep 
episodes and to what extent the technology can mitigate the risk of crash. 
 
Other Disease Conditions 

In addition to insulin dependent diabetes (typically Type I) and OSA, other diseases such as cardiovascular disease, 
seizure disorders and traumatic brain injury can also expose the driver to an increased crash risk due to acute 
symptoms (e.g.: heart attack and stroke, epileptic seizure). With cardiovascular disease, there are increasingly more 
middle-age and older drivers being treated for symptoms associated with atrial fibrillation and congestive heart 
failure. Also, conditions associated with respiratory health such as Chronic Obstructive Pulmonary Disease and 
asthma are becoming increasingly common in the adult population. These conditions can turn from chronic to acute 
without warning. Each acute health decline is associated with distinctive physiological and behavioral changes from 
the normal condition and it is important to have the ability to detect such  declines of the occupant while in the 
vehicle to activate an in-vehicle intervention. 
 
More long-term degenerative conditions include osteoporosis and mild-to-severe cognitive degeneration such as 
Alzheimer’s disease. Ridella et al. (2012) found that osteoporosis or poor bone quality was the most significant 
contributing factor to injury, specifically, incidence of rib fractures, in older occupants involved in an injury-
producing car crash. These crashes typically involved lower crash speeds than did crashes involving younger injured 
drivers and occupants. While treatable with many medications, bone quality continues to diminish with age with 
evidence that the pace of bone loss is more significant in women than men. Cognitive impairments are more difficult 
to determine in real-time without an adequate baseline or history for comparison. 

   
REVIEW OF CURRENT TECHNOLOGIES USING DRIVER MONITORING  

Occupant Identification 

A first step in the process of monitoring is passive, non-invasive  identification of the driver and perhaps passengers.  
The driver’s identification would be useful in a host of different applications.  Establishing identity may allow for 
the vehicle to create a baseline of the occupant’s health status that can be used in current as well as future driving 
tasks.   Algorithms may be developed for the vehicle to learn how it is driven in certain situations and the associated 
physiological measurements specific to that person. Also, there may be situations where several drivers share a 
single vehicle such as the use of a family car, where there may be a range of driving abilities.  A teenager who is 
enrolled in a graduated licensing program may have certain vehicle restrictions put upon them whereas other 
members of the family may enjoy the full privileges of driving.  Therefore, based on the driver’s identity, a 
monitoring system would adjust the vehicle’s abilities or monitor highly complex driving tasks more closely. 
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In addition, a history of the driver’s performance would also lend insight into the longitudinal data for comparative 
purposes. This information could be used to determine long-standing trends in performance such as declining mental 
capacities (e.g. Alzheimer’s or dementia), health issues, changes in driving performance, etc. 
 
Technology to determine identity  has grown exponentially in the past few years due to consumer demand for 
greater security of data.  Much of this technology has the ability to be adapted to the vehicle environment or brought 
in through portable devices. Camera-based technology can be used for identification through facial recognition or 
iris analysis software. Fingerprint, vascular pattern and voice-recognition scanning are other methods of uniquely 
identifying an individual.   An alternative to passive identification is the driver’s userprovided information through a 
key card, implantable radiofrequency ID or RFID or other device that uniquely identifies an individual. 
 
Behavioral Monitoring (DrIIVE) 
 
Driver Monitoring of Impairments and Inattention using Vehicle Equipment (DrIIVE) is a current NHTSA project 
that uses driver monitoring data. DrIIVE is focused on the development of an algorithm that can accurately identify 
and distinguish among different forms of inattention or impaired driving including alcohol-impaired, drowsy, and 
distracted driving.  DrIIVE determines driver behavior data from vehicle measures such as steering and pedal inputs, 
lane variability, and compares signatures of normal driving with impaired driving.  The goal is to use the DrIIVE 
algorithm to identify and evaluate the effectiveness of driver monitoring countermeasures on impaired driving 
behavior.   
 
Alcohol Impairment  (DADDS) 
 
In 2008, NHTSA launched a cooperation program to develop in-vehicle technology that could accurately, precisely, 
and reliably measure a driver’s blood alcohol concentration.  in a non-invasive way in a very short time. (Monk, 
2012).  Now in it’s second phase, two subsystems have been developed and are being integrated into a research 
vehicle for further testing. One system is breath based and continually samples the area around the driver for alcohol 
and carbon dioxide through an infra-red sensor whose measurements can be converted into a blood alcohol 
concentration. A second subsystem is touch-based  and can measure the absorbed near infra-red light in a person’s 
finger and derive an alcohol concentration.  These systems have the dramatic potential to reduce crashes and 
fatalities involving drunk drivers by denying the driver the ability to start and drive the vehicle.  
 
Physiology/Health Monitoring 
 
Monitoring driver health should be non-invasive and passive. Both in-vehicle and wearable technology have been 
developed, however, only wearable technology has been commercialized to date.  As sensor technology has become 
smaller and less expensive, a vast array of sensor applications have been developed or published. Ford Motor 
Company, working with a restraint and sensor supplier, developed a prototype vehicle to measure a variety of 
physiological signals (Watson et al, 2011). Figure 2 below indicates that they were looking at both comfort 
(temperature difference) and real-time physiology (heart and respiration rate).  They indicated that the signals could 
be integrated for use in assessing driver performance as a function of wellness, workload, and stress.  Ford also has 
demonstrated an in-vehicle glucose monitoring system that could detect a driver’s possibility for a diabetic episode 
(Ford, 2011).   
 
Demonstrations of blood oxygenation measurements using a variant of typical finger-tip pulse oximeters, Meditech 
2011), blood pressure and bone mineral density bring more information about driver/occupant health into the 
vehicle.  The BOSCOS (BOneSCanning for Occupant Safety, Hardy et al, 2005) project created an in-dashboard 
ultrasound sensor that could deduce bone strength based on measurements taken from the distal third of a finger 
when inserted into the device.  
 
Wearable devices or mobile human health monitoring is a maturing area of health awareness particularly in the 
sports medicine market. Miniaturized electronics or MEMS technology has allowed for creation of wearable wrist 
bands, head bands, even undergarments that are capable of accurately measuring heart rate, respiration, sweat 
production, etc. These devices are usually coupled to a portable electronic device application to record daily exercise 
results and associated physiological responses. The applications have algorithms to detect medical issues and 
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performance progress with the person wearing the technology as well as determine stress or anxiety levels.   The 
cost of these devices has dropped dramatically in the past several years with many devices selling in the $50-$150 
range. The sophistication, accuracy and reliability of these devices is steadily improving such that some diagnosis of 
heart and respiratory health may be deduced from the signals rather than just the instantaneous rates that are reported 
by the devices. 
 
 

 

Figure 2. Examples of prototype health monitoring sensors embedded in vehicle components (Wired , 2011) 

Establishing a Baseline 
 
Another new challenge within the scope is connection and integration of monitoring the state of the driver in the 
home (off board) and in the vehicle (on board). Monitoring a person’s life in the home through so called “Smart 
Home” or “Wearable sensors” is becoming important for “Aging in Place” or “Tailor-made Health Care” and it is 
actively being tested by research projects for its effectiveness and clarification of system and social requirements. 
However, there are no systems / research projects focusing on integration of on and off board driver monitoring. 
Early signs of an acute health problem may be detected in the home before driving and such data can be brought into 
the vehicle to provide the in-vehicle monitoring system with an initial parameter set to raise the sensitivity of 
detection. For example, lower glucose level data or poor sleep quality data measured in the home may be used in the 
vehicle for earlier detection of hypoglycemia and frequent micro-sleep occurrence (Table 2). Driver state monitored 
in the home and in the vehicle can also make use of cause-effect relationships. For example, failure to take 
medicines in the home may increase the possibility of occurrence of hypoglycemic episodes or epileptic seizure 
behind the wheel. Such behavioral data measured in the home can also be brought into the vehicle to enhance or 
change the in-vehicle intervention strategy (e.g. failure to take anti-seizure medicine locks the ignition). Integration 
of on- and off-board driver monitoring will increase accuracy of detection of drivers’ health problems and 
strengthen the intervention strategy to avoid crash.  
 
Another example of driving performance data being brought into the off-board network involves continuous 
monitoring of the driving environment. Driving includes many complex and parallel cognitive and physical tasks 
under certain levels of stress that may magnify certain aspects of a driver’s chronic health problems (e.g. 
cardiovascular diseases). Therefore, a driver’s state measured in the vehicle can be brought into a hospital or a smart 
home to be integrated with other behavioral and physiological data measured in the home to diagnose the chronic 
health state with better accuracy or in an earlier phase.  
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IMPLEMENTATION/APPLICATION 
 
Evolution of the current driver state monitoring technology and integration with vehicle-embedded biometric 
sensors or wearable sensors with wireless connection to the vehicle (on-board monitoring) should be able to detect 
some or all of the acute health declines in real time. Candidates for on-board biometric sensors for each of the 
driver’s acute health decline are summarized in Table 2. Most of the biometric sensors for on-board monitoring 
shown in Table 2 are still under research or development. Applicability of these sensors to the detection of acute 
symptoms needs to be investigated with consideration for the cost and the user acceptance. 
 
If the driver-state monitoring can detect early signs of a decline while the driver is still conscious, a multilayered 
intervention strategy using information and assistive vehicle control could be taken. When the driver fails to take 
actions to avoid a crash or if the system fails to detect early signs of the decline due to too rapid decline, future 
autonomous vehicle technology will be the key to avoiding crashes by bringing the vehicle safely to a stop on the 
hard shoulder of the road for the driver who is likely to be unconscious (i.e. Autonomous Emergency Stop System or 
AESS, Shunk, 2009, Nissan, 2013). Stopping a vehicle in busy traffic or high speed traffic could induce additional 
crashes involving other vehicles. Vehicle-to-vehicle communication to broadcast the emergency signal to 
surrounding and following vehicles could be  included in the AESS. Accuracy of detection also needs to be high. 
Integration of environmental sensors with driver-state monitoring could be considered so that the system activates 
the Autonomous Emergency Stop System when the driver is in a health decline and the risk of crash is imminent 
(Figure 3). 
 
The contributing factors and co-morbidities associated with the most common injuries also point to interventions 
that could benefit the older occupant. While knowing age of a driver or occupant may help in some driving task 
assistance, it is less of an indicator of overall health. Sensing occupant bone quality can lead to real-time adaptive 
restraint systems that lower the loads on the poorer quality bones of older or less healthy occupants and could help 
reduce incidence of rib injuries.  Newer technologies such as 4-point belt systems and inflatable seat belts also help 
to reduce or distribute chest loading (Ridella, 2012).   
 
Driver-state data measured in the vehicle can be also brought out of the vehicle to the off-board network. Advanced 
Automatic Collision Notification System (AACN) is an example that automatically sends notification of a collision 
event together with vehicle and driver-state data from the pre-crash phase to a hospital so that the ER will have 
sufficient preparation time prior to arrival of the casualties. 

 

 

Figure 3 . Functional flow of Autonomous Emergency Stop System. 
 



Ridella 8 
 

ISSUES 
 
Privacy, protection and malicious intent 
 
Since the devices and other instrumentation in the vehicle or on the occupant are measuring, monitoring, 
transmitting, and/or recording health status information, concerns arise regarding the protection and privacy of this 
data.  The Health Insurance Portability and Accountability Act of 1996 (HIPAA) sets rights for an individual’s 
health information and prescribes rules and limits over who can review and receive that information. This rule 
applies to any form of the information whether it is oral, written or electronic.  The information that is envisioned to 
be collected may not necessarily be covered by HIPAA depending on how it is collected and used.  For example, it 
may be that the data is only used in a non-identifiable, real-time manner to inform the vehicle that the occupant is 
drowsy or has an abnormal condition. In other cases, when linked to driver/occupant identification technology, the 
data is personal and possibly subject to HIPAA.  It could also be recorded and/or transmitted depending on 
application if there is a need to interpret  the data in real-time by a health professional or to review the data by law 
enforcement at a later date should an event occur.  HIPAA rules are very specific about cases such as this, however, 
it is likely an interpretation of HIPAA in the vehicle environment may need further review as this technology 
develops. 
 
Another consideration is the malicious use of the health information data. Security of the data, whether stored in the 
vehicle, in a portable device or other form needs to be protected from other sources that could use or manipulate the 
data in harmful ways.  For example, a baseline health information data set could be altered either through direct 
intervention or electronic methods such that an abnormal event would not be detected by the vehicle or software.   
An intervention or denial of service could occur during driving, thus making the system inoperative. There are 
endless scenarios that could occur depending on sophistication of the system. Current cybersecurity research 
regarding other vehicle communications should include the possibility of how the health and driver monitoring 
activities can be protected from mischievous intent. 
 
Performance  
 
Performance of such a system would require extensive testing for reliability, repeatability and reproducibility.  In his 
short article nearly fifty years ago, one of Waller’s criteria for monitoring for physical impairment was that “few 
persons of low accident risk should be falsely categorized in the high accident risk group”. That is, the number of 
false-positive identifications should be minimized and conversely, the number of true-positives should be 
maximized. It is imperative that these devices are calibrated properly or can be re-calibrated based on manual 
feedback from the driver/occupant or perhaps periodically from a software “push” through an application or other 
connected technology whether portable or vehicle-based. 
 
Cancelable 

 
Finally, the driver and/or other occupants may reserve the right to cancel or not participate in real-time identification 
and monitoring. This may apply when a vehicle is not driven by an owner or designated driver for whom baseline 
data exists.  Also, rental cars may either not be equipped with such devices or a driver may opt out from 
participation. 
 
SUMMARY  

The paper discussed the premise that identification of a vehicle driver (and/or occupants) as well as monitoring their 
health, mood or behavioral status while driving, may have significant value for safety. It is documented that health 
conditions may contribute to increased crash risk and that those with conditions have poorer outcomes should a 
crash occur. By monitoring a driver’s health status in real time, possibly comparing to a baseline value, acute 
conditions may be detected and a warning , intervention, or other countermeasure may be applied. There is abundant 
technology in development as evidenced by manufacturs’ documented research. Also, both traditional and non-
traditional automotive suppliers have been involved in the early vehicle-based technology research, however, the 
sports market has dominated the wearable monitoring device development and production. Research projects in 
driver behavior, alcohol detection and a host of other technologies in development may lead to new advances in 
safety as the population of driver’s age and people are more aware of their own health status.   
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Monitoring technologies and application to driver’s state  
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ABSTRACT 
 
Recent times have seen an increased interest in technologies of driver assistance. Understanding the driver’s 
current status is crucial for the implementation of Advanced Driver Assistance System (ADAS) and Driver 
Status Monitoring (DSM). Emotional factors such as anger have been long attributed to aggressive driving 
behaviours and increased likelihood of road accidents. Therefore, being able to accurately detect the affective 
states of the vehicle occupant will be critical for enhanced safety and comfort. 

In this paper, we present a methodology for the evaluation of the emotional states of vehicle drivers. The 
proposed approach performs an assessment of the emotional states by using combination of biologically 
inspired visual information processing and neural networks coupled with feedback mechanisms. The system 
consists of the following stages: (1) biologically inspired image pre-processing; (2) facial feature extraction; (3) 
multilayer perceptron for classification; and (4) feedback mechanism. The system has been preliminary 
validated by using data available from Japanese Female Facial Expression (JAFFE) database. Four affective 
states were identified and tested, which includes anger, sadness, and happiness. Subsequent tests have shown 
the successful detection rate of 91.3% with test images, and over 70% correct classification in images with 
Gaussian noises, respectively. 
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INTRODUCTION 

Recently there has been increasing attention towards automobile safety. According to the recent report by the 
UK government, road deaths have increased by 4% in the first quarter of 2014 compared to the previous year 
[1]. While the overall figure of fatalities has been under decline for the past decade, thanks to the improvement 
in medical treatment as well as the greater attention shown to the vulnerable road users such as the pedestrians 
and motor cyclists, the issue of road safety remains a key area for almost all nations in the world regardless of 
their wealth, with the fatality figure reaching over 1.2 million in the year 2010. Yet, only 28 nations in the 
entire world, which account for less than 450 million peoples of 7 billion world populations, are deemed to 
have sufficient legal measures to protect road users [2]. 
 
On the other hand, recent trends have shown that the developed nations are devoting a substantial amount of 
resources to improve road safety. In Britain, the government has spent £15.1 billion on the prevention of road 
accidents alone [3]. On a continental level, European Commission has launched a new EU Road Safety 
programme in 2010 as part of drive to cut the number of road fatalities by half between 2011-2020. All these 
findings show that the issue of road safety goes beyond the scope of industry.  
 
Improving road safety comes in many different forms. The EU Road Safety programme has been divided into 
seven sub-sections: improving the education and training of road user; better enforcement of road rules; 
providing safer transport infrastructures; developing safer vehicles; promoting the use of modern technology to 
increase road safety; improving emergency and post-injuries services; and increased effort to protect 
vulnerable road users. 
 
Within this paper, we have identified human emotions as one of the key influencers of driving performance.  
While most of existing Driver Monitoring System (DMS) focuses on drivers’ concentration or drowsiness, 
another aspect of driver’s status that deserves our attention is in emotion. Certain states of emotion, such as 
anger, and frustration can lead to aggressive and risky driving, which could result in accidents and fatalities. 
We believe that the accurate detection of emotional states from facial expressions is an important method to 
analyse and provide feedback to the vehicle driver’s concentration level. Through successful recognition of 
emotional status, such as distraction, anger or frustration, it will be possible to improve the driving conditions 
and thereby safety of the vulnerable road users such as the pedestrians and cyclists. 
 
We have applied image processing techniques and neural networks in the measurement of affective states based on 
still facial images in this study. The result of the finding can be used as a basis for future research in the application 
of affective computing in DMS. 
 
 There have been a number of studies which looked to present the feasibility of affective computing for 
improving road safety, and testing various methods of image processing in affective computing. It is notable that, 
despite numerous papers in the literature, there have been a minimal number of studies carried out on the use of 
image processing techniques coupled to neural networks in order to create an intelligent vision system which could 
evaluate human emotions. 
 
 
METHODS 

Biologically Inspired Orientation Filters 

We claim that biologically inspired visual information processing offers a robust method for mimicking the 
robustness and flexibility of the primary visual cortex. One major strand of knowledge behind our current 
understanding of the behaviour of the primary visual cortex, an important brain area for vision, comes from the 
set of experiments by Torsten Hubel and David H. Wiesel [4]. Their experiment consisted of inserting 
microscopic electrodes into the visual cortex of experimental animals. This was used to read the activity of 
single cells in the visual cortex while presenting various stimuli to the animal's eyes.  
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Figure 1. Hubel & Wiesel’s Experiment Setup (left), and the responses of the cat’s cortex when a rectangular slit of 
light of different orientations is shown (right) 

 

They discovered that a topographical mapping in the cortex, i.e. that nearby cells in the cortex represented 
nearby regions in the visual field, i.e. that the visual cortex represents a spatial map of the visual field. 
Individual cells in the cortex, they found responded to the presence of edges in their region of the visual field. 
Furthermore, cells were found which would fire only in the presence of a vertical edge at a particular location 
in the visual field, while other nearby cells responded to edges of other orientations in that same region of the 
visual field. These orientation-sensitive cells were called "simple cells", and were found all over the primary 
visual cortex [5][6] 

Based on Hubel and Wiesel’s experimentation, the biologically inspired visual information processing 
incorporates the orientation selectivity of simple cell neurons to extract the features of facial images. The 
bahviour of the simple cells suggest that these cells possessed a patterned receptive field, with excitatory and 
inhibitory regions so that the cell would activate only if it received input (due to light) in the excitatory portion 
of its receptive field in the absence of input from the inhibitory portion. This operation is comparable to the 
operation of edge detection in image processing, which would process an image by spatial convolution with an 
edge filter [7]. 

We have simulated these biological operations through the application of multiple orientation filters for the 
feature processing of the facial expression. Our aim was to develop a filter which could accurately recreate the 
characteristics of the simple cells in mammalian visual cortex. These filters consist of six filters, each with 
specific orientation selectivity, yielding outputs of six orientation images for each input image (test image and 
reference image). Each set of six orientation filters provided orientation-selectivity for 0, 30, 45, 60, 90, and 
135, degrees, and represents the receptive field properties of simple (linear) cells in V1. 
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would be described as shown in Table 1. In the context of affective computing, identification of emotional 
states using FACS code is known as EMFACS (Emotional facial Action Coding System), and they would 
concentrate on AU combinations related to emotional states. [15] 

Table 1. 
Basic Emotions and Corresponding Action Units 

Emotion Action Units (AU) 

Happiness 6 ( ‘cheek raiser’) + 12 (‘lip corner 
puller’) 

Sadness 1 (‘inner brow raiser’) + 4 (‘brow 
lowerer’) + 15 (‘Lip Corner 
Depressor’) 

Surprise 1 (‘inner brow raiser’) + 2 (‘outer brow 
raiser’) + 5B (‘Upper Lid Raiser*’) + 
26 (‘Jaw Drop’) 

Fear 1 (‘inner brow raiser’) + 2 (‘outer brow 
raiser’) + 4 (‘brow lowerer’) + 5 
(‘Upper Lid Raiser’) + 7 (‘Lid 
Tightener’)+ 20 (‘Lip Stretcher’) + 26 
(‘Jaw Drop’) 

Anger 4 (‘brow lowerer’) + 5 (‘Upper Lid 
Raiser’) + 7 (‘Lid Tightener’) + 23 
(‘Lip Tightener’) 

Disgust 9 (‘Nose Wrinkler’) + 15 (‘Lip Corner 
Depressor’) + 16 (‘Lower Lip 
Depressor’) 

 

Determining Regions of Interest (ROI) 

The actual process of calculating ROI has been done through detection of eyes and subsequent establishment 
of centre points between the eyes as the reference point through template based object recognition of eyes. 
From here, relevant AUs can be analysed for both the input image and neutral ‘reference’ image to which it 
would be compared against, as shown below. (figure!) 

 

Figure 3. (from left) Input image, orientation image, detection of central point between two eyes as the reference 
location of calculating the ROIs, and how the calculated ROIs appear in the original input image. 

 

Tests show that eye locations were detected successfully in both frontal and side facial image, demonstrating 
the effectiveness of combination of orientation selective feature extraction and feature based object 
recognition. This would, in turn, allow for measuring the level of driver attentiveness in road driving 
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In addition to cascaded neural networks of MLP explained previously, the feedback to ROI is applied by the 
trained upper and lower networks of MLP. In case of failed detection of safety monitoring output, the encoding 
of ROI values to neural input is subject to the feedback with the lower weight, for the pre-analysed ROI for the 
largest value of emotional status – which is the main contributor to the detection failure. The feedback rate to 
ROI applied to neural network is a fixed value and the selection of ROI is controlled by the ROI value and the 
input status of upper network when feedback is required, for this framework. The method of deep network is 
scope of investigation by evaluating the effectiveness and relevance to the performance of the target function. 

 

DATA SOURCES 

The accuracy of the emotion detection was measured by tests carried out on the JAFFE database, through 
processing with two feedforward neural networks (multi-layer perceptrons) and the feedback mechanism based 
on a deep learning concept. The biologically inspired visual information processing showed a significantly 
high accuracy to emotion recognition without the need for precise matching or complex computation. This was 
superseded by mimicking the primary function of the simple cell of visual cortex, which provided a degree of 
robustness by maintaining accuracy even in test images with Gaussian noises. 

 
RESULTS 

Based on the data set of 360 images, the overall rate of detection returned over 91.3% accuracy, as shown in 
the Table 2 below. The proposed method of combining biologically inspired visual information processing 
with multilayer perceptron also gave a satisfactory performance, maintaining a 70+% accuracy level up to 5% 
Gaussian noise level. Investigation of deep-learning inspired feedback mechanism also yielded an improved 
performance, resulting in 27.2% reduction in the occurrence of false-positives. 

Table 2. 
Result of Biologically Inspired Visual Information Processing & Multilayer Perceptron 

 

Compared to the comparative studies carried out in affective computing, combination of biologically inspired 
visual information processing and MLP have outperformed methods based on artificial neural networks (ANNs; 
84% accuracy) and combination of Sequential Floating Forward Search (SFFS), Fisher Projection (FP), and K-
nearest neighbour algorithm (KNN; 81% accuracy) [16]. 

In depth review of biologically inspired visual information processing approach revealed certain patterns of 
interest. It was demonstrated that four emotional states (happiness, anger, sadness, and neutral) can be 
successfully classified with a small number of variables. Yet there were some level of differences as to how 
accurately each emotion was classified by biologically inspired visual information processing approach. 

Angry emotional state was most likely to be detected with accuracy, with 100.0% successful detection rate, 
followed by happy emotional state with 90.0% classification accuracy. Sad emotional state had the most 
inaccurate incidents of classifications, which has also been documented in previous researches [17]. Reason for 
this difficulty could be attributed in parts to the comparative lack of facial expression in sad emotional state. 

Happy Angry Sadness Neutral
Happy 81 1 7 1 90.0 % (81 / 90)
Angry 0 90 0 0 100.0 % (90 / 90)
Sad 2 2 78 8 86.7 % (78 / 90)
Neutral 2 0 8 80 88.9 % (80 / 90)

Output Classification ResultInput
Class

Accurate 
Classification Rate
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Compared to anger, which involves composite movements of eyebrows, competitive movements of eyelids, 
and major movement in lip areas, sadness would be expressed by movement of eyebrows and small movement 
to the corner of the lips. Even in real-life situations, detecting expression of subtle sadness is a challenge, and 
it is possible to infer such factors have been represented in the test results as well. 

Further tests were carried out to determine the robustness of biologically inspired visual information 
processing approach, through introducing Gaussian noise to the images. This was done in order to examine its 
applicability in real life situations, where the image data is often corrupted. The results of classification with 
noisy test images showed a reduction of 16.01% in detection rate at 1% noise level, and maintained over 70% 
level of accuracy even at 10% noise level. 

Table 3. 
Detection rate (%) of biologically inspired visual information processing method with different level of Gaussian 

noise 

 

DISCUSSIONS AND LIMITATIONS 

In this study, our proposed model for identifying affective states required the presence of a neutral emotive 
state, which would be used as a reference. While it is theoretically possible to process an individual’s 
emotional status from a single image without any reference, in reality, there is a wide variability to the strength 
of human expression even within same emotive state. This variability is deemed dependent on the cultural, 
national, regional and gender difference of the subject [18]. This had also been reinforced during the analysis 
of datasets: that absolute values of expression within an individual cannot be used as a reliable measure. 
Further tests and statistical analysis could be carried out in the future as a means to develop an accurate and 
reliable indicator of emotive states based on input image alone. 

Another challenge we have recognised during the experiments was that there are at least two kinds to the 
expression of emotions – genuine and fake. A fake expression often differs from a genuine expression. For 
example, in case of happiness, only the zygomatic major muscle, which runs from the cheekbone to the corner 
of lips, moves in case of fake emotional status. On the other hand, a genuine expression of happiness would 
involve movement of orbicularis oculi and pars lateralis (eyebrows) as well as zygomatic major. In addition to 
limited facial muscle movements, fake emotive states are also known to contain a certain degree of asymmetry 
[19],[20].  

On the other hand, for certain emotional states in JAFFE dataset, there were very little expressions present. In 
comparison to the neutral image, even human vision had difficulty in determining the emotional state without 
the label. 

Further investigation of other facial affection database has shown that this issue isn’t unique to JAFFE 
database, as demonstrated in the figures below. 

Noise 
Level

SumROI(G) SumROI(M)

0.0% 78.7 91.7
1.0% 76.4 79.1
2.5% 73.1 75.7
5.0% 68.8 73.5

10.0% 64.1 65.9
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Figure 6.Limitations of dataset 
Top Row: Examples of ‘fake’ emotion – asymmetry is clearly visible in the fake facial expression 

Middle Row: Images displaying supposed expression of sadness (left) and neutral (right). 
Notice the lack of difference between this image and that of the neutral state (right). 

Black Box: Example of angry and neutral emotion from an alternative database. 
Without the labels, it would be challenging to determine that left image is demonstrating anger and the right one is of 

the neutral emotional state. 
 

CONCLUSIONS AND RELEVANCE TO THE SESSION SUBMITTED 

We believe this research has produced a foundation from which further studies could be carried out. For 
example, would be in refining the biologically visual information processing approach. We have recognised 
that there are at least two kinds to the expression of emotions – genuine and fake. Within the context of driver 
monitoring system, fake emotions are unnecessary and should be ignored. Further studies carried out with 
images of emotions in real-life situations could provide a better training for the monitoring system capable of 
demarcating two categories. 

Secondly, we have worked with the assumption of only neutral emotional states allowing for ideal driving 
situations. This hypothesis is under discussion within affective computing research, and will be given further 
updates in the coming time. 
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