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ABSTRACT

Currently the Basic Safety Message (BSM) used by heavy truck tractor-trailers was developed for Vehicle-to-
Vehicle (V2V) communications in the U.S. DOT Safety Pilot and uses a simplified bounding box algorithm for
conveying the position and heading of the tractor-trailer. However, because of the articulated behavior
inherent in a tractor-trailer, this approach does not accurately identify the trailer position or vehicle space for
V2V safety applications in all situations. Consequently, in certain situations this can lead to an unacceptable
number of false and missed warnings to drivers in surrounding connected vehicles. The U.S. DOT, in
partnership with the Crash Avoidance Metrics Partnership (CAMP) and Mercedes-Benz Research &
Development North America, Inc. (MBRDNA) conducted a project, Tractor-Trailer Basic Safety Message
Development (TT-BSM), to develop technical solutions to this location identification problem for heavy truck
tractors with one or more articulated trailers. TT-BSM developed several BSM enhancement approaches to
more accurately represent tractor-trailer articulation. Furthermore, the team also completed the system and
performance requirements and an assessment of the enhanced BSM impact on internal vehicle platform (On-
Board Equipment, OBE, necessary vehicle sensors on the tractor and the trailer) and external systems (e.g.
communications channel loading, other OBE-equipped vehicles, and backend systems). The enhanced BSM
can more accurately transmit position and heading for articulated tractor-trailers and thus allows for better
safety warnings and fewer false and missed warnings to drivers.

INTRODUCTION

Over the last several years, the United States Department of Transportation (U.S. DOT) and the Crash Avoidance
Metrics Partnership (CAMP) Vehicle Safety Communications 3 (VSC3) Consortium (Ford Motor Company,
General Motors Corporation, Honda R&D Americas, Inc., Hyundai-Kia America Technical Center, Inc., Mercedes-
Benz Research & Development North America, Inc., Nissan Technical Center North America, Inc., Toyota Motor
Engineering & Manufacturing North America, Inc., and Volkswagen Group of America) have collaborated in the
area of Vehicle-to-Vehicle (V2V) communications for the Safety Pilot program. "' V2V safety systems generally
rely on Dedicated Short Range Communications (DSRC) transmissions to share position, kinematic, and vehicle
information with neighboring vehicles that are similarly equipped and warn their drivers of potential imminent
dangers. The Safety Pilot Model Deployment (MD) launched August 21, 2012 running through 2013 provided
insight into public perception, acceptance, and effectiveness of active safety systems that could be supported by the
use of low-cost technologies, specifically 5.9 GHz DSRC and the Global Positioning System (GPS). This was
demonstrated in MD on different prototype vehicles, including tractor-trailers, that hosted multiple DSRC-based
safety applications aimed at addressing several crash categories, such as rear-end, lane change, intersecting, or
oncoming. >

Three Class 8 tractor-trailers were equipped with fully integrated on-board equipment (OBE) and used in Driver
Clinics held in Ohio and California under the V2V Safety Pilot project. *! The results of the clinics showed the
promise of the technology for heavy vehicles while under controlled conditions on a test track. These trucks were
then included in the Model Deployment field test in Ann Arbor, Michigan. ! For Model Deployment, the position
and heading of the tractor-trailer in the Basic Safety Message (BSM) was derived by a simplified bounding box
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algorithm which treated the tractor-trailer as a single rigid body. However, because of the articulated behavior
inherent in a tractor-trailer, this approach can lead to an unacceptable number of false and missed warnings to
drivers in surrounding connected vehicles, especially when the vehicle is in a turn. The U.S. DOT in partnership
with CAMP and Mercedes-Benz Research & Development North America, Inc. has developed technical solutions
(enhanced BSM) to this issue and established system and performance requirements. Furthermore, the partnership
also completed an assessment of the enhanced BSM’s impact on the internal vehicle platform (On-Board
Equipment, OBE, necessary vehicle sensors on the tractor and the trailer) and external systems (e.g. communications
channel loading, other OBE-equipped vehicles, and backend systems). The objective of this paper is to describe
these team efforts and results.

Background

V2V communications based on 5.9 GHz DSRC allow vehicles to be aware of other nearby similarly equipped
vehicles and assess collision risks by exchanging safety messages describing vehicles’ current status. These
communications can deliver information beyond on-board sensors’ range or field of view and high-quality
information such as vehicle weight, size, and brake status. As of now, research has mostly focused on DSRC-based
systems aimed at alerting the driver of imminent dangers. A recent NHTSA report shows that just two of many
possible V2V safety applications, Intersection Movement Assist IMA) and Left Turn Assist (LTA), would on an
annual basis potentially prevent 25,000 to 592,000 crashes, save 49 to 1,083 lives, avoid 11,000 to 270,000
Maximum Abbreviated Injury Scale 1-5 injuries, and reduce 31,000 to 728,000 property-damage-only crashes by the
time V2V technology had spread through the entire fleet.

The first prototype applications developed as part of several CAMP projects sponsored by the U.S. DOT included:

Emergency Electronic Brake Lights (EEBL)

Forward Collision Warning (FCW)

Lane Change Warning (LCW) / Blind Spot Warning (BSW)
Do Not Pass Warning (DNPW)

Intersection Movement Assist (IMA)

Control Loss Warning (CLW)

These V2V applications share a common concept of operations: using BSMs that are periodically broadcast by other
similarly-equipped vehicles to track nearby vehicles and assess the risks of collision. BSMs include information on
vehicle position, speed, heading, brake status, and size. This small set of information is sufficient to support most
V2V safety applications for collision prediction.

Collision prediction algorithms need accurate information on the space occupied by each vehicle over time as well
as its movements. This requires a model to represent vehicles and the space they occupy as they travel and execute
driving maneuvers on the road. In current V2V systems developed by CAMP, vehicles are modeled as rigid body
rectangles with a length and width. The BSM position transmitted over the air corresponds to the vehicle center
expressed in terms of latitude, longitude, and elevation. Each vehicle calculates its center as an offset from the
physical position of the GPS antenna (typically installed on the roof of the vehicle). V2V applications can tolerate
errors in absolute position estimates to a certain degree as long as the relative position estimates meet application
accuracy requirements. The V2V positioning system typically supports lane-level (< 1.5m) accuracy.

The recent CAMP projects focused solely on rigid body vehicle representations, as noted above. Unfortunately, the
model does not sufficiently describe the space occupied by articulated vehicles during turn maneuvers. This
problem can affect any articulated V2V-equipped commercial, transit, or passenger vehicle and will be discussed
further in this paper.

V2V with Articulated Vehicles
Understanding how V2V applications generate warnings to the driver provides a foundation for the discussion on

articulated vehicles. For example, FCW tracks one or more Remote Vehicles (RVs) ahead of the Host Vehicle (HV)
traveling in the same general path and issues a warning to the HV driver if there is an imminent danger of collision



with an RV. FCW compares the HV predicted path (based on its location, speed, heading, and other parameters)
with the RV path history. This path history comes from a trail of recent RV positions and is included in its BSM.
This vehicle center point is calculated as an offset from the vehicle’s GPS antenna (i.e. a constant offset in a rigid
body).

When vehicle articulation is considered, additional factors must be included to process V2V applications correctly.
In vehicle dynamics terminology, as in Figure 1 below, a vehicle’s heading refers to the direction of the forward
longitudinal axis of the vehicle’s body with respect to a global reference. Its course heading is its instantaneous
direction of travel with respect to a global reference. During steering maneuvers, the course heading will always
differ from the vehicle heading. This difference is called the side slip angle, or . When traveling on a straight road,
the side slip angle is essentially zero. In addition, the vehicle’s articulation angle is defined as the difference
between the tractor and trailer headings.

For a light vehicle, reporting the course heading as the vehicle heading is an acceptable approximation. The
instantaneous direction of travel (course heading) is far more meaningful to other DSRC-equipped vehicles than the
vehicle heading since those vehicles use the direction of travel to predict its future path. This future path helps other
vehicles calculate intercepts. This simplification becomes a problem when the broadcasting vehicle has articulation
angles between multiple bodies.
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Figure 1. Articulated Vehicle Terminology.

For an articulated vehicle, it became apparent that correcting for articulation angle was not sufficient to accurately
represent the location of the trailer. The vehicle is represented as a box, oriented in the direction of its course
heading irrespective of the vehicle heading and rotated about its geometric center. Since both the true tractor and
trailer poses are rotated about the center of the tractor (since the GPS antenna was mounted on the tractor) by the
side slip angle, the DSRC system needed to correct for both the side slip angle and the articulation angle in order to
accurately represent the location of the trailer. Without this correction, the error in the trailer orientation would be
significant, especially as trailer length or number of trailers increase. Modeling could be further improved with
filtering of other error sources (e.g. GPS, yaw rate, etc.), but was not the goal of this project and was omitted.

In the articulated vehicle used for this project, the GPS antenna was mounted on the roof of the tractor so when the
vehicle changed direction, this offset remained constant even though the trailer swung in an arc relative to the
tractor. As a result, the articulated vehicle path history can be significantly offset from the actual trailer position and
orientation. As this erroneous ‘ghost’ trail was laid behind the vehicle, another approaching vehicle could wrongly
trigger or suppress a warning. False warnings might occur when the HV is driving in the neighboring lane and the
RV is going into a curve or turn. If the RV trail is in the path ahead of the HV when it is actually to the right of the
HYV while the road curves to the right, the HV may get a false FCW warning.

V2V safety applications on long, non-articulated vehicles such as city buses may also need to correct for vehicle
versus course heading differences. In large steering angle maneuvers, such as pulling out of a bus stop, the vehicle
may develop very large side slip angles. These side slip angles could be as much as 60°. It is unclear what impact
this problem would have on warning application performance for long vehicles. That question merits further
investigation, yet lies outside the scope of this paper.



The TT-BSM project was initiated to address these shortcomings due to misrepresentations of the space occupied by
articulated vehicles. The main focus of the project was to derive the position and heading of each part of the
articulated vehicle, define over-the-air messages to convey this information to nearby vehicles, and implement and
test the solution in an actual vehicle; all with a minimum impact on the existing V2V system and communications
standards.

TT-BSM Solution Sets

The TT-BSM project considered three alternative approaches to describe position and heading for each part of an
articulated vehicle. The results of these alternatives were compared to the baseline rigid body approach, i.e., the
initial rigid body model developed in previous CAMP projects (Figure 2a). This approach was included for
comparison and had the advantage of not requiring changes to the V2V safety applications or Standards, but offered
a simplistic and inaccurate representation of the trailer position. The second approach (multi-DGPS approach,
Figure 2b) used distinct rigid body representations for the tractor and trailer where separate, independent rectangles
represented the actual locations of each body of the articulated vehicle. A multi-DGPS receiver system was used to
derive these locations. In the third approach (best fit rigid body, Figure 2c), the length and width of the rigid body
model was kept the same, but translated its position laterally and longitudinally so that the rectangle is centered in a
weighted average of the articulated tractor-trailer’s planar area. Even though this solution broadcasts a rigid body
model, it still required knowledge of the articulation angle. Finally, the fourth approach (algorithm approach, Figure
2d) used separate rectangles, as in the second approach, but no sensors are used to determine the actual position of
the trailer. Rather, this is calculated through a kinematics algorithm. The yaw rate of the tractor is derived from
DGPS. This is translated into a lateral velocity at the tractor hitch point (fifth wheel) and, since the trailer hitch point
is fixed to the tractor hitch point, this translates into a trailer yaw rate. The trailer yaw angle is then numerically
integrated from the trailer yaw rate. The trailer heading and center location are then calculated from the known
geometry.
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Figure 2. TT-BSM Project Solution Set.

In terms of packaging the trailer description into over-the-air messages, approaches 1 and 3 do not require any
changes to the BSM or the safety applications: the baseline is the default light vehicle approach, while the third
solution would simply offset the location of the rigid body tractor-trailer representation. Approaches 2 and 4 would
require a BSM that could include a separate package of information for trailers in addition to the tractor. In order to
select a workable approach for implementation, numerous simulations were developed and run to assess the pros and
cons of each.

Simulations
In order to compare the solution approaches, scenarios were first developed to highlight their differences. Since the

intention was to address potential problems caused by vehicle articulation, the scenarios incorporated conditions
where the tractor-trailer bodies were at different headings, creating a non-zero articulation angle between them.
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Furthermore, the vehicle was limited to turning from a thru lane and not a left or right turn pocket. This accentuated
the rigid body model misrepresentation of the trailer position and heading by minimizing vehicle offset from the thru
lane of travel as close to the intersection as possible.

Once scenarios were defined, tractor and trailer models as well as vehicle motion models simulating vehicle
dynamics in the selected scenarios were constructed in the TruckSim simulation tool. At the same time, Matlab and
Simulink were used to create models of each approach and V2V safety application functions within the on-board
DSRC platform. The result of each simulation was a target classification and threat level for each component of the
articulated tractor-trailer relative to the specific approach used. The results for each approach, as applied to a
specific scenario, were overlaid and visualized in animations, providing clear comparisons of the various approaches
in a simulated environment.

In all, four scenarios were used in the simulations. These included a constant radius of curvature road, two types of
right hand turns, and a fast lane change at highway speeds. In all scenarios, the HV is following the tractor-trailer
on the same road. The following describes these scenarios and relevant parameters in more detail.

For curved roads, such as a highway cloverleaf exit, the tighter or smaller the curve radius, the more likely the false
alert due to misrepresentation of trailer articulation. Conversely, a large radius curve more closely approximates a
straight road, reducing articulation angles and the chances for a false alert. In this scenario, a tractor-trailer was
driven in a constant radius of curvature turn at steady-state conditions. This modeled pure articulation while
removing transient vehicle steering dynamics from consideration. This case was used to determine if using a rigid
body model could cause the vehicle to protrude into an adjacent lane virtually and, conversely, if any of the
approaches represented the tractor-trailer pose correctly, so as to prevent false warnings.

In the second scenario, multi-lane right hand turns, the tractor-trailer is driven in a typical (for the U.S.) wide
intersection turn of 90 degrees. A left hand turn scenario is not used since this is typically done from a left turn
pocket or suicide lane and does not fulfill the more stressing condition where the vehicle turns from a thru lane.

For single lane right hand turns, the third scenario, the tractor-trailer makes a 90 degree turn onto a narrow
intersecting road. In order to successfully negotiate the tight turn, the tractor-trailer swerves onto the adjacent left
lane before turning right. This is more typical in urban settings where narrow roads may be lined with parked cars.

The last scenario involves a fast lane change at highway speeds where the tractor-trailer undergoes high speed
negative offtracking. This is a well understood phenomenon for articulated vehicles engaged in evasive lateral
maneuvers at highway speeds. This is the only situation in which negative offtracking is anticipated for standard
tractor-trailers in typical driving conditions in the U.S.

These scenarios represent the range of kinematics and dynamics of articulation angle in combination tractor-trailers
in typical driving conditions. Since tractors and trailers come in many sizes, considerations for their lengths must be
made since this directly impacts the BSM information and potential for false alerts. Tractor and trailer sizes
considered were limited to those available in the CCV-IT and V2V-MD projects, but represent a large proportion of
existing vehicles in U.S. commercial fleets.

For the constant radius of curvature scenario, the likelihood of getting a false warning was maximized when the
articulation angle between the two bodies was maximized. In turn, the articulation angle was maximized when the
tractor wheelbase was minimized and the trailer wheelbase was maximized. This represented a worst case
articulation angle for typical tractor-trailer combinations.

In the right hand turn scenarios, the articulation angle is a dynamic function of position in the turn path. The
likelihood of getting a false warning depended on where the tractor was in the turn as well as what the articulation
angle was at that point in the turn. The relationship between these two factors and the determination of which of the
two factors was dominant depended heavily on the radius of curvature of the turn. In each case, the likelihood of
getting a false warning was maximized when the articulation angle was maximized and the total straight-line trailer
length was maximized.



For the fast lane change scenario, the likelihood of getting a false warning was maximized when the lane change
time and distance were minimized and the articulation angle of the rear-most trailer was maximized. The tractor-
trailer essentially acted as a pendulum, with the lateral motion of the tractor acting as an impulse input to the
pendulum. A tractor with a shorter wheelbase was able to turn faster and should therefore result in a greater lateral
impulse input to the trailer. A trailer with a shorter wheelbase would also result in a greater articulation angle for a
given impulse input, but multiple trailers will amplify this effect down the longitudinal axis of the combined tractor
trailer system.

TruckSim was used in a co-simulation environment with Matlab/Simulink, as noted previously. A constant velocity
target was sent from Simulink to TruckSim for each vehicle in each scenario. TruckSim then simulated the
dynamics of the vehicle in the specific run case of the scenario. In all cases, the tractor-trailer was the remote
vehicle, leading the host vehicle on the same road. The analysis required certain conditions, including the presence
of vehicle articulation and the potential for collisions. As such, FCW proved most relevant to false alerts since
articulation could be produced in turns and curved roads and collisions could be possible from a trailing vehicle. As
such, the simulations evaluated the approaches against this specific safety application.

The output that TruckSim sent back to Simulink was a series of reference points that were attached to specific points
on the vehicle bodies; most important were the volumetric centers of the vehicle bodies. Simulink/Matlab were then
used to compute lateral offsets between HV and RV, RV path history, and lane boundaries so the HV could classify
the RV target information. The Simulink/Matlab model was reconfigurable to run the baseline rigid body model or
any of the other three approach models. Finally, the data were run through a model of FCW to determine if a
warning occurred.

Tractor and trailer models were designed in TruckSim to match up with each of the scenarios and their various run
cases. They were also designed to coincide with vehicles that may be available for live testing, where possible, so
that TruckSim results could be compared to test results. This resulted in some cases where the tractor-trailer
configuration that was optimal for trapping false warnings was not used.

In developing the models, another consideration further constrained the list of scenarios. The purpose of the fast
lane change scenario was to trap the effects of high speed negative offtracking since this is the only scenario in
which negative offtracking would be expected to occur. A model of a fast lane change was created in TruckSim to
analyze this scenario. It was determined from simulations that a lane change would have to occur at an unreasonably
fast and dangerous lateral speed in order to induce articulation angle dynamics that could have the potential for false
warnings. As a result, the fast lane change at highway speeds was removed from the scenario list and was not
considered further in this project.

The simulations showed that some approaches consistently performed better than others. Figure 3 shows examples
of simulation results. In all cases, the tractor-trailer was the RV and a light vehicle was the HV. The tractor-trailer
color varied by approach: yellow for the baseline rigid body, light blue for multi-DGPS, light brown for the best fit
rigid body, and semitransparent black for the algorithm approach. Similarly colored lines were drawn to show the
breadcrumb trails of the HV and RV. In all cases, the breadcrumb trails also precede the vehicles due to the
limitations of pictures versus animations. Several of the approaches were overlaid in the same graphic in order to
show comparisons. A legend was also included to indicate how the HV classified (e.g. ahead, ahead left, ahead
right) each target (i.e. tractor, trailerl, and in cases with doubles, trailer2). In the cases where the classification is
surrounded by a red border, the HV received an FCW warning for that target. Since both rigid body models
(original and best fit) treat the tractor and trailer(s) as a single rigid body, the target classification in the legend is
only reflected under the tractor column. It is important to note that the light blue, multi-DGPS approach was
considered to be the most accurate method to determine the true pose of the tractor and trailer(s) since this relied on
direct DGPS measurements for each. As such, the closer another approach lined up with the multi-DGPS
representation and target classification, the more accurate and less likely to generate false alerts that approach was
considered.
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Figure 3. Sample TT-BSM Simulation Results.

In Figures 3a and 3b, a tractor-trailer is making a right turn and a light vehicle is approaching it from behind in the
adjacent lane. This represents the same simulation, but is split into two parts to provide better clarity. The baseline
and multi-DGPS solutions remain the same in both, but Figure 3a includes the best fit rigid body approach, whereas
Figure 3b shows the algorithm approach. In this case all non-baseline approaches perform better than the baseline
since they did not warn inappropriately. From this example and many more similar results, it became clear that the
multi-DGPS and algorithm approaches are superior to the baseline and best fit rigid body approaches. They track
and classify the tractor and trailer(s) more accurately and do not cause FCW to falsely warn or fail to warn. The best
fit rigid body does perform better than the baseline rigid body approach, but not nearly as well as the other two.

Testing

Road tests were designed to verify the accuracy of the proposed solutions to the articulated vehicle BSM problem.
The tests enabled comparisons between actual recorded tractor and trailer data and the proposed enhancement to the
BSM rigid body model. As part of this project, one of the above approaches was selected for further investigation
and implementation. This was the algorithm approach. For comparison purposes, the study team also implemented
the baseline rigid body and multi-DGPS approaches. The test system was designed such that multiple approaches
could be tested on the road simultaneously. This was the surest way to develop comparable results without having
to focus undue energies on precise repetition of test parameters.

Three scenarios were used for testing: constant radius curve, multilane right turn, and single lane right turn. These
were based on the simulation scenarios and optimized for a test track environment. The Constant Radius Curve
scenario simulated a freeway cloverleaf or other long/wide curve road geometries. This was a steady state scenario
in which the truck followed a curved path of constant radius. The centerline of the path driven by the tractor-trailer
had a curve radius of 30m. The Multi-lane Right Turn scenario simulated typical wide intersection road geometries
in which a truck driver could have multiple lanes available to execute a turn without entering the opposing lanes of
travel. A turn radius of 20m was used. This scenario required the use of two, two-lane roads forming a
perpendicular intersection. The Single Lane Right Turn scenario simulated the wide-turn strategy truck drivers
utilize when turning in very constricted road geometries. In this circumstance it was necessary for the truck to
encroach on neighboring lanes, sometimes oncoming, in order to execute a turn such that the trailer does not off-
track onto a sidewalk.

Table 1 shows results for tests conducted in this project where a warning was expected. A ‘pass’ meant that a
warning was generated when it should have and a ‘fail’ meant that a warning did not occur as it should have. Each
cell represents a separate test run. It is clear that the algorithm approach performed best while the rigid body
baseline approach fared the worst. This is in line with the simulation results, though the multi-DGPS approach was
expected to have better performance. During some of the testing, DGPS readings were inconsistent and may
account for the multi-DGPS test failures.



Table 1. Test Results.

Rigid

Multi-DGPS

Algorithm

Constant Radius Curve

In addition to road testing, a general assessment of the approaches was conducted in order to determine whether
other factors may influence the results and either strengthen or undermine the algorithm approach effectiveness.
Table 2 contains the summary of this general assessment. Each approach was compared based on various
implementation factors. These included potential changes to the BSM structure, the accuracy of tractor and trailer
positional representation, additional sensor measurements, changes to computational load, and changes to V2V
safety applications. While no approach was perfect in all categories, the algorithm approach performed well and did
not impose an insurmountable burden for implementation. Data frames and elements must be defined and added to
the BSM Part II structure and some changes are required in supporting V2X software modules, but none of the V2V
safety applications required modification for this project. The algorithm approach BSM is backward compatible
with existing V2V safety applications, though these will only decipher the tractor information. Vehicles receiving
the enhanced BSMs will need to understand the new data frames and elements in order to correctly act on the

information they contain.

Table 2. General Assessment of Approaches Relative to Implementation Factors.

Communication | Representational | Required Tractor Trailer Application
Changes Accuracy Knowledge | Calculations | Calculations| Changes
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i BSM | Tractor | Trailer || Time | Time . HV's Target
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Angle| Angle
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Two
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. Limited .
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DGPS . tractor angle) two bodies
matching angle)
only
tractor and
trailer poses
Single rigid-
body, best fit] Fair- | Fair -
Best Fit [in curve with incorrect| partial Lateral Lateral
Rigid |weighted None v lateral off- Yes | No Location location None
average of location tracking
bodies
Two
separate .
bodies, Lmtl(l)ted Heading Must track
Algorithm |estimate 1 Good | Good | No | No None (articulation .
. tractor two bodies
tractrix of onl angle)
the curve of y
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Basic Safety Message Enhancements

The BSM format is specified as part of the SAE J2735 DSRC Message Set standard. ! A BSM consists of data
elements (DEs) and data frames (DFs). A data element is a basic building block and a data frame comprises one or
more data elements or other data frames. Data elements and data frames can be used to form BSMs similar to words
in a sentence. For this reason, the SAE J2735 standard is often referred to as the data dictionary for V2V
communications. Although BSMs are intended for use over the 5.9 GHz DSRC spectrum, their specification is
independent of any frequency bands and they can be effectively used in other communication contexts. It is
generally accepted that broadcasting BSMs at 10 Hz is sufficient to meet the requirements of the most demanding
V2V safety applications.

The BSM format was carefully designed to minimize the message size. Smaller messages can help reduce DSRC
channel congestion. To keep BSM sizes small, their content is structured into two parts. Part I — known as Basic
Vehicle State — is mandatory and contains those data elements and data frames that must always be included in a

BSM. BSM Part I has a fixed size of 39 bytes.

Table 3. BSM Part I Data Elements and Data Frames.

BSM Data Item Sequence ]I3,SM Type Bytes
art
Data
Message ID 1 Element 1
Data
Message Count I Element 1
Data
Temporary ID 1 Element 4
. Data
Time I Element 2
Latitude I Data 4
Element
Longitude . I Data 4
PositionLocal3D Element
. Data
Elevation I Element 2
Positioning Accuracy I Data Frame 4
Transmission & Speed I Data Frame
. Data
Heading ' I Element 2
Motion 5
. ata
Steering Wheel Angle I Element 1
Accelerations I Data Frame
Brake System Status Control 1 Data Frame
Vehicle Size VehicleBasics I Data Frame

Part II, which includes the Vehicle Safety Extensions and Vehicle Status data frames, is optional. Typically,
vehicles periodically broadcast BSM Part I only: specific events, such as emergency braking and control loss, can be
described by setting the corresponding event flag in BSM Part II.

The Tractor-Trailer Basic Safety Message (TT-BSM) project developed BSM extensions to accurately represent
articulated vehicles in V2X communications to reduce the potential for false warnings in the DSRC-based safety
applications developed as part of the previous Connected Commercial Vehicle — Integrated Truck (CCV-IT) and



Connected Commercial Vehicle — Retrofit Safety Device (CCV-RSD) projects. When creating extensions to the
current BSM format, several design goals were considered. In particular, special efforts were made to:

accurately represent the position of articulated vehicle bodies in V2X BSMs
minimize false warnings in nearby V2X-equipped vehicles

minimize changes to the current SAE J2735 BSM structure

minimize changes to existing V2X safety applications and equipment

The algorithmic approach from the proposed solutions produced by the TT-BSM project was selected since it met
the goals better than the other solutions. In the algorithmic approach, the trailer dynamics during a turn maneuver
are calculated in real-time. The trailer hitch point is fixed to the tractor hitch point. The yaw rate of the tractor is
derived from GPS; this is translated into a lateral velocity at the hitch point; and this is translated into a yaw rate of
the trailer. The trailer yaw angle is then numerically integrated from the trailer yaw rate. The trailer heading and
center location are then calculated from the available geometry. A significant advantage of this approach is that no
extra sensors are required. In initial testing and simulations, it performed nearly as well as the multi-DGPS solution
without the associated long-term costs and complexity of the multi-DGPS solution. It can effectively represent
vehicle articulation in multiple tractor-trailer configurations and in several representative scenarios, far better than
the existing rigid body approach. Also, it is implementable with reasonable changes to supporting software modules
without affecting the function of the safety applications.

With the algorithmic approach, no changes are necessary to BSM Part I, which remains a fixed size of 39 bytes.

This ensures a high degree of backward compatibility with existing V2X systems. A new data frame,

DF _TrailerlInfo, is introduced to describe the trailer position and heading. The DF_TrailerInfo data frame is optional
and is to be included in BSM Part II only when necessary, e.g. when one or more trailers are attached to a tractor.

DF _TrailerInfo is comprised of a DE_TrailerCount data element and one or more DF_TrailerDetail data frames,
depending on the number of trailers. DE_TrailerCount is a new data element that indicates how many

DF _TrailerDetail data frames follow. DE_TrailerCount represents the number of trailers attached to the tractor.
Each DF_TrailerDetail data frame is formed by elements and frames that are part of the existing BSM
specifications.

Table 4. DF _TrailerDetail Items.

DF_TrailerDetail Item Sequence Type Bytes
Latitude Data Element 4
Longitude o Data Element 4
Elevation PositionLocal3b Data Element 2
Positioning Accuracy Data Frame 4
Transmission & Speed Data Frame 2
Heading ) Data Element 2
Steering Wheel Angle Motion Data Element 1
Accelerations Data Frame 7
Brake System Status Control Data Frame 2
Vehicle Size VehicleBasics Data Frame 3
Path History Data Frame Varies
Path Prediction Data Frame Varies
Vehicle Height Data Element 1
Bumpers Heights Data Frame 2
Vehicle Mass VehicleData Date Element 1
Trailer Weight Data Element 2
Vehicle Type Data Element 2
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If any trailers exist, then the correspondent DF_TrailerInfo data frames shall be included in BSM Part II as
necessary. DF_TrailerInfo will include as a minimum DE_TrailerCount and DF_TrailerDetailOne. The size of the
DF _TrailerInfo data frame varies due to the inclusion of variable size frames such as Path History and Path
Prediction and based on the number of articulations. Since the fixed portion of the DF_TrailerInfo data frame is 40
bytes, the resulting size roughly compares with the size of BSM Part I for a tractor with a single trailer. In case of
multiple trailers, the size of this data frame could reach the double or triple of BSM Part 1.

Introducing a new data frame for BSMs may raise concerns about increased over-the-air data traffic and consequent
effects on channel load. Even if larger than BSM Part I, this is still a fairly small amount of data and it can be
included in a single DSRC packet. It should also be noted that tractor-trailer vehicles represent a very small fraction
of overall vehicles on the road.

Additionally, the position of the trailer needs to be described through BSM Part II only during turn maneuvers,
which represent a small fraction of the driving time. When an articulated vehicle follows a straight path with small
variations of the heading direction, it can describe its dynamics through the long rigid body model, thus broadcasting
BSM Part I for a longer body. The onboard V2V system could continuously monitor the trailer articulation angle
and adopt the strategy to broadcast BSM Part II only when this angle is larger than a certain threshold.

It should also be observed that the tractor-trailer combination broadcasting BSM Part I (to describe the tractor
dynamics) and BSM Part II (to describe the trailer dynamics) contributes to channel load roughly equally to a pair of
vehicles closely following each other and occupying the same space on the road. In other words, an articulated
vehicle occupies a portion of the road that, in a congested traffic scenario, would be occupied by a pair of light
vehicles broadcasting two BSM Part I messages to describe its dynamics. Based on all the above considerations, it
can be concluded that introducing the proposed scheme to accurately describe the trailer position and heading does
not result in additional over-the-air traffic able to significantly impact DSRC channel load.

CONCLUSIONS

This study investigated solutions to improve the tractor-trailer position algorithm used in the current BSM and
proposed an enhanced BSM for articulated vehicles by integrating trailer information into Part II of the BSM.
This approach was successful in transmitting this information to surrounding vehicles using V2V
communications once trailer parameters were known While only tested with one safety application, the
enhancement to the tractor-trailer body model is likely applicable to others as well. Further work on an
automated method of obtaining trailer parameters may be necessary to fully implement this solution for
articulated commercial vehicles in service.
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ABSTRACT

This paper represents an automated driving control algorithm in urban traffic situation. In order to achieve a
development of a highly automated driving control algorithm in urban environments, the research issues can
be classified into two things. One of the issues is to determine a safe driving envelope with the consideration
of probable risks and the other is to achieve robustness of control performance under disturbances and model
uncertainties. While human drivers maneuver a vehicle, they determine appropriate steering angle and
acceleration based on the predictable trajectories of the surrounding vehicles. Therefore, not only current
states of surrounding vehicles but also predictable behaviors of surrounding vehicles and potential obstacles
should be considered in designing an automated driving control algorithm. In order to analyze the probabilistic
behaviors of surrounding vehicles, we collected driving data on a real road. Then, in order to guarantee safety
to the possible change of traffic situation surrounding the subject vehicle during a finite time-horizon, the safe
driving envelope which describes the safe driving condition over a finite time horizon is defined in
consideration of probabilistic prediction of future positions of surrounding vehicles and potential obstacles.
Since an automated driving control algorithm is required to operate in a wide operating region and limit the set
of permissible states and inputs, a model predictive control (MPC) approach has been used widely in designing
an automated driving control algorithm. MPC approach uses a dynamic model of the vehicle to predict the
future states of the system and determines optimal control sequences at each time step to minimize a
performance index while satisfying constraints based on the predicted future states. Since the solving
nonlinear optimization problem has computational burden, we design an architecture which decides a desired
steering angle and longitudinal acceleration parallel to reduce the computational load. For the guarantee of the
robustness of control performance, a robust invariant set is used to ensure robust satisfaction of vehicle states
and constraints against disturbances and model uncertainties. The effectiveness of the proposed control
algorithm is evaluated by comparing between human driver data and proposed algorithm.

l. Introduction

Recently, the interest of automotive industry changes from the passive safety system to the active safety system and,
by extension, automated driving system due to advances in sensing technologies. For example, active safety
applications, such as vehicle stability control (VSC), adaptive cruise control (ACC), lane keeping assistance (LKA)
and lane change assistance (LCA) system, have been extensively researched [1]. In order to enhance safety and
achieve zero fatalities, many researches have been undertaken to integrate individual active safety systems for the
development of an automated driving system [2].

In developing an automated driving system which is required to operate in a wide operating region and limit the set
of permissible states and inputs, MPC approach has been used widely because of its capability to handle system
constraints in a systematic way [3], [4]. MPC approach uses a dynamic model of the plant to predict the future states
of the system and determines optimal control sequences at each time step to minimize a performance index while
satisfying constraints based on the predicted future states [5]. The first term of this optimal control sequences is
applied to the system. At next time step, new optimal control sequences is calculated over a shifted prediction
horizon. In [6], Falcone et al. present a MPC based active steering controller for tracking the desired trajectory as
close as possible while satisfying various constraints. In this research, it is assumed that the desired trajectory over a
finite horizon is known. Erlien et al. use a safe driving envelope which means a safe region of states in which the
system should be constrained [7]. In this research, the safe driving envelope consists of a stable handling envelope
to ensure vehicle stability and an environmental envelope to constrain the position states for the collision avoidance.
The environmental envelope is defined based on the current states of surrounding environment of the subject
vehicle. In order to compensate the effect on the control performance by model uncertainties and exogenous



disturbances, robust MPC approach which adds a linear feedback control input to the nominal control inputs based
on the analysis of robust invariant sets have been introduced and used to design an autonomous control algorithm
[8].

In order to develop a highly automated driving system, the research issues can be classified into two things. One of
the issues is to enhance safety under the possible change of the behaviors of neighboring vehicles in the future.
Human drivers maneuver the vehicle predicting possible surrounding vehicle’s trajectories. Therefore, not only
current states of surrounding environment of the subject vehicle but also predicted behaviors of surrounding
environment should be considered to control the vehicle autonomously [9]. Furthermore, since probable behaviors
of surrounding vehicles should be considered to prevent a potential collision accident in the future, a probabilistic
prediction is required [10]. The other issue in designing an automated driving system is to achieve robustness of
control performance under disturbances and model uncertainties due to inaccurate or time varying parameters [6].

In this research, we focus on designing an automated control algorithm which handles probable risky situations due
to the possible change of traffic situation surrounding the subject vehicle while satisfying a robust control
performance with respect to model parameter uncertainties and exogenous disturbances. In order to enhance safety
with respect to the potential behaviors of surrounding vehicles, a safe driving envelope which describes the safe
driving condition over a finite time horizon is defined in consideration of probabilistic prediction of future states of
surrounding environment. Then MPC problem is formulated to determine the desired steering angle and desired
longitudinal acceleration while maintaining the subject vehicle into the safe driving envelope. A tube-based robust
MPC approach is used to guarantee robust performance under model uncertainties and exogenous disturbances.

This paper is structured as follows: The overall architecture of the proposed automated driving control algorithm is
described in Section II. In Section 11, the lateral dynamics model for the determination of the desired steering angle
and longitudinal dynamics model for the determination of the desired longitudinal acceleration are derived briefly.
In Section IV, probabilistic prediction of surrounding vehicle behaviors and the description of the safe driving
envelope is described briefly. Then the controller is designed based on robust MPC approach in Section V. Section
VI shows the vehicle test results for the evaluation of the performance of the proposed algorithm. Then the
contribution of this research and introduction of future works are summarized in Section VII.

1. Overall Architecture

The overall architecture of the proposed automated driving control algorithm is shown in Fig. 1. In the integrated
perception layer, the information which is required to determine the desired driving mode and safe driving envelope
is refined using measurements from various sensors. In order to assess the driving situation precisely, states of the
subject vehicle and surrounding vehicles should be estimated from various measurements via exterior sensors, such
as vision and radar sensors. Then, the probable behaviors of the surrounding vehicles over a finite prediction
horizon are predicted using the information of current states of surrounding vehicles. Using the estimated states of
the subject vehicle and the ranges of probable behaviors of the surrounding vehicles over a finite prediction horizon,
a desired motion or desired driving mode of the subject vehicle is determined in the risk management layer. Since
the goal of the automated driving control algorithm proposed in this paper is to control the vehicle autonomously on
the road, the required driving mode is classified into lane keeping and lane change mode. The desired driving mode
is determined with the consideration of not only current states of traffic situation surrounding the subject vehicle but
also predictable situations among the potential changes of traffic situation surrounding the subject vehicle. Then the
safe driving envelope is determined based on the desired driving mode. Then the controller is designed to determine
the desired steering angle and the desired longitudinal acceleration separately while satisfying reliability. Using
robust MPC approach, the desired control inputs are determined to improve safety and ride comfort while satisfying
constraints of states and inputs.

1. Vehicle dynamics model

In order to obtain the desired control inputs separately based on MPC approach, the lateral dynamics model and
longitudinal dynamics model should be derived. In this research, the lateral dynamics model is designed by
combining the bicycle model and error dynamics with respect to a road. Furthermore, the longitudinal dynamics
model is designed by integrating the inter-vehicle dynamics and longitudinal actuator’s dynamics.
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Fig. 1 Overall architecture of the proposed automated driving control algorithm

A. Lateral dynamics model

A classic bicycle model is usually used to design a lateral control law [3]. However, since an automated driving
system should operate in a wide operating region, a classic bicycle model which assumes small slip angles of tires
could not be suitable as a predictive model. On the other hand, if we use a nonlinear tire model to build a dynamic
model, a nonlinear optimization problem should be solved at each time step. However, a computational burden to
solve a nonlinear MPC problem is a critical barrier for its implementation [6]. In order to cope with this drawback,

we apply a saturated linear tire model to reflect a tire saturation characteristic [11]. Then the bicycle model could be
modified as follows:
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where, k . and k_, are the cornering stiffness adjustment coefficients to reflect a tire saturation characteristic.

These adjustment coefficients are assumed to be known exactly in this paper.

In order to control the vehicle in the lateral direction, the modified bicycle model is combined with the error
dynamics which describes error with respect to a road. Therefore, the complete model used to design a MPC
controller is defined as shown in (3) and a diagram of the vehicle model is depicted in Fig. 2.

Xiat = Aa&xlai + B|a|u|a1 + Fp‘latpref (3)
a, a, 0 0 b
a, a, 0 0 b, 0

Aat = 0 l 0 0 ' Blal = 0 1 Fp,la& = _Vx (4)
v, 0 v, O 0 0

where, the state vector is x, = [ﬂ y e, ey]T , the control input is Uy, =& 4, €, is the orientation error of the

vehicle with respect to the road, e, denotes the lateral offset with respect to the center line of the lane, and g, is
the road curvature.
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Fig. 2 Diagram of lateral dynamics model

In order to solve a receding horizon optimization problem, the continuous differential equation (3) should be
discretized. (1) can be converted as follows:

X (K+2J8) = Ay g (K[ D)X (K[1) + By (K[UCK|) + F, 1y (K[1) oy (1) ()
Aat,d =eA‘MT5v Bla(‘d :(J.OTSeA‘SJdT) Bacs Fp,la(‘d =(_[0T5eﬁmrdr) Fp,la& (6)
where, T, is the sampling time. The system matrices of the lateral dynamics model, such as A, (k|t) + Bt (k|t) ,

and F, . 4 (k|t) , are obtained using the predicted sequences of the longitudinal velocity during a finite time-horizon.

B. Longitudinal dynamics model
In designing a longitudinal dynamics model of the subject vehicle, an actuator delay between the desired
longitudinal acceleration and the response of the actual longitudinal acceleration is considered as follows [11]:

1
X, des (7)

a, :ma
where, 7, is a time-constant chosen as 0.4 sec based on the analysis of the vehicle test platform.

In this research, two variables, such as distance error Ad and relative speed Av,, are used to define the inter-
vehicle dynamics.

Ad :Cxicx jes 1 Cx es = 7| 'Vx+stae
d Jd h saf (8)
Avx = Vx‘largel -V
where, C, and C, ., are the actual clearance and desired clearance between the subject vehicle and the target

is the

longitudinal velocity of the target vehicle. In this research, in order to embrace driving characteristics of all of the
drivers, the time gap, z,, is chosen as 1.36 sec which is the mean value of time gap for collected driving data in

steady-state following situation [1]. Furthermore the minimum safety longitudinal clearance, C

vehicle respectively, 7, indicates the time gap, C is the minimum safety longitudinal clearance and v

X, safe x,target

is chosen as 2

x,safe !
meters which is identical with the mean value of the clearance at the zero speed for all of the drivers [1]. The
method how to select the target vehicle among the surrounding vehicle would be described in Section IV.

The derivative of the equation (8) could be derived as shown in (9)

R, g
x = Gxtarget — Yx
Combining equation (7) and equation (9), the longitudinal dynamics model could be described as follows:
Xlong = Aong XIong + Blcngulung + Flongax‘target (10)
01 -7 0 0
Aong =|0 0 -1 'Blong = 0 ’Flong =1 (11)
0 0 _}éax %ax 0

where, the state vector is x,,, =[Ad Av, a, ]T and the control input is u,,, =a

X,des *
As similar as the lateral dynamics model, the discretization of the continuous state equation (10) is conducted
through the ZOH method as follows:
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V. Safe driving Envelope

Generally, human drivers monitor surrounding environment and predict the future states of surrounding
environment based on the current states of that. Then drivers estimate the threat level of possible actions and decide
the maneuver of the subject vehicle in consideration of the predicted states of surrounding vehicles during a finite
time-horizon. Therefore, in order to develop a highly automated driving system, a safe driving envelope which
indicates the drivable boundaries for safe driving over a finite prediction horizon should be determined with the
consideration of not only current states of traffic situation surrounding the subject vehicle but also probable future
states of that simultaneously [9]. Considering probable future states of surrounding vehicles, it could be expected
that the automated driving control algorithm could handle probable risky situation during a finite time-horizon and
enhance safety. Furthermore, if we define the safe driving envelope based on the probabilistic prediction, it is
expected that an automated driving control algorithm which reflects human driver’s driving characteristics with an
acceptable ride comfort could be developed. Firstly, the method of the probabilistic prediction method is presented
in Section I11-A. Then the determination of the desired driving mode and the safe driving envelope is represented in
Section 111-B.

A. Probabilistic prediction of surrounding vehicle’s behavior

One of common approach to predict the future states of traffic situation surrounding the subject vehicles is a
deterministic prediction which assumes that the surrounding vehicles maintain its current movement during a finite
time horizon. Since this approach ignores the probability of all possible movements of surrounding vehicles, this
could cause incorrect interpretation of the current driving situation.

In order to compensate the shortcomings of the deterministic prediction of the behaviors of surrounding vehicles,
the possible behaviors of surrounding vehicles are predicted and the risky behaviors among the possible behaviors
of other vehicles surrounding the subject vehicle are considered in determining the safe driving envelope.

For the prediction of the reasonable and realistic behaviors of surrounding vehicles, the interaction between vehicles
and the restriction on surrounding vehicle’s maneuver due to the road geometry should be considered [12].
Moreover, it is assumed that drivers of the surrounding vehicles obey general traffic rules [13]. It means that the
surrounding vehicle’s behavior is assumed to keep the lane or change one lane at a time, not two or more lanes at a
time. If one of surrounding vehicles changes the lane, then that vehicle is assumed to keep the relevant lane in the
far-off future. Furthermore the violation of the centerline of surrounding vehicles is prohibited.

In predicting reasonable ranges of the future states of surrounding vehicles, driving data are collected on test track
and real road to analyze the probabilistic movement characteristics of the vehicle [14]. For the implementation of
these assumptions, a path-following model is designed while interacting with a vehicle state predictor during one
cycle of the prediction process. In the vehicle state predictor, the vehicle’s probable position and its error covariance
over a finite time horizon are predicted by Extended Kalman Filter using the desired yaw rate obtained by the path-
following model as the virtual measurement.

Fig. 3 depicts the overall architecture of probabilistic prediction of surrounding vehicles. Using measurements from
the various sensors, such as vehicle sensor, radar and vision sensor, the range of the predicted states with

corresponding uncertainty is determined as shown in Fig. 3. p, is the longitudinal position of the vehicle, p, is the

lateral position of the vehicle, N denotes the prediction horizon, and subscript ‘j" means the j-th objects. In

predicting the position of the surrounding vehicle, it is assumed that the size of the object is equivalent to the subject
vehicle. The ellipse in Fig. 3 indicates the predicted probable range of the center gravity of the vehicle at the
prediction time. A detailed description on the computational procedures to predict the probabilistic range of future
states during a finite time horizon is described concretely in [10], [15].
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Fig. 3 Overall architecture of probabilistic prediction of surrounding vehicle's behavior

B. Driving mode and Environmental envelope decision

For the determination of the environmental envelope to improve safety, first of all, a potential risky situation should
be considered. The risky situation among the probable behaviors of the surrounding vehicles could be classified
roughly into three types. Firstly, if the preceding vehicle in the originating lane of the subject vehicle decelerates
abruptly, then the potential risk of collision between the preceding vehicle and the subject vehicle would increase.
Secondly, if the approaching vehicle in the adjacent lane accelerates during a lane change maneuver of the subject
vehicle, then the collision between the approaching vehicle in the adjacent lane and the subject vehicle could be
expected. Thirdly, there could be a potential risk of collision due to a sudden cut-in vehicle. Therefore, for the
enhancement of safety, not only current states of surrounding environment of the subject vehicle but also these risky
behaviors of the surrounding vehicles over a finite prediction horizon should be considered in determining the
environmental envelope to improve safety.

Since the environmental envelope should be defined based on the desired motion, we should determine the desired
motion or desired driving mode of the subject vehicle before the decision of the environmental envelope. The
required driving mode could be approximately classified into lane keeping and lane change mode on an auto road. If
there is no preceding vehicle in the originating lane which has a potential risk of collision during a finite prediction
horizon, the desired driving mode could be determined as a lane keeping mode. In this case, the environmental
envelope is determined to keep the originating lane while maintaining safety with respect to the surrounding vehicle.
If the longitudinal or lateral clearances expected at the prediction time step k between the subject vehicle and
surrounding vehicle are larger than predefined threshold value, then the collision risk is low and the environmental

envelope for e, is determined to prevent a lane departure. On the other hand, if the longitudinal or lateral

clearances at the prediction time step k are expected to be smaller than thresholds, then the collision risk is high.
Therefore the environmental envelope for e, is determined to keep the originating lane while evading the

approaching vehicle in the adjacent lane. The decision process of the environmental envelope for a lane keeping
mode and the environmental envelope to keep the originating lane while maintaining safety with respect to the
surrounding vehicles are described in Fig. 4-(a). In Fig. 4-(a), the pink rectangle indicates the region of the possible
behavior of surrounding vehicles and the violet rectangle indicates the region of the possible behavior of
surrounding vehicles with the consideration of sensor uncertainty.

On the other hand, there could be a preceding vehicle in the originating lane which has a collision risk during a
finite prediction horizon or one of the surrounding vehicles in the adjacent lane is expected to change the lane into
the originating lane of the subject vehicle during the prediction time horizon. In this case, the lane change of the
subject vehicle from the originating lane to the adjacent lane might be required. Then the feasibility of the lane
change and safety after the lane change should be considered. If there is no vehicle is in the adjacent lane when the
lane change of the subject vehicle is required, then the lane change could be permitted. Otherwise, we should
investigate the minimum longitudinal clearance between the subject vehicle and the vehicle in the adjacent lane to
which the subject vehicle change the lane from the originating lane over a finite prediction horizon. If the minimum
longitudinal clearance between the subject vehicle and the vehicle in the adjacent lane is larger than the minimum
safety longitudinal clearance over a finite prediction horizon, then the collision between the subject vehicle and the
vehicle in the adjacent lane would be avoided over a finite prediction horizon. Therefore, the lane change of the
subject vehicle could be permitted and the desired driving mode could be determined as a lane change mode. On the



contrary, if the minimum longitudinal clearance between the subject vehicle and the vehicle in the adjacent lane is
smaller than the minimum safety longitudinal clearance over a finite prediction horizon, there could be a collision
between the subject vehicle and the vehicle in the adjacent lane during a finite time-horizon and the lane change of
the subject vehicle should not be permitted. The decision process of the environmental envelope for a lane change
mode is described in Fig. 4-(b).
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Fig. 4 Decision process of the environmental envelope
Consequently, the condition of limitation of the lateral deviation, e, to satisfying the environmental envelope can
be written as follows:
Hen, - X(K) < Gy uppersoung (), k=1, N
Ganvtomer poung (K) < Hepy - X(K),  k=1...,N,
where,
H,,=[0 0 0 1]
Before the determination of the environmental envelope to guarantee the longitudinal safety, we need to define the
state of the target vehicle for the control of the longitudinal acceleration. In the case of a lane keeping mode, if the
width of the environmental envelope for e, over a finite prediction horizon is large enough, it means that possible

(14)

behaviors of surrounding vehicles in the adjacent lane are predicted to keep their lane. Then the preceding vehicle in
the originating lane is chosen as the target vehicle for the control of the longitudinal acceleration. If there is no
preceding vehicle in the originating lane or the clearance between the subject vehicle and the preceding vehicle is
too far, then the virtual vehicle to follow the desired velocity is chosen as the target vehicle for the control of the
longitudinal acceleration.

On the other hand, one of adjacent vehicles could be expected to approach to the originating lane of the subject
vehicle or change the lane into the originating lane of the subject vehicle. In this case, the width of the
environmental envelope for e, could be smaller than minimum safety width. It means that the subject vehicle could

not keep the lane only with the steering maneuver. Generally, when drivers recognize that the neighboring vehicle
in the adjacent lane is entering into the lane of the subject vehicle, drivers generally tend to release the throttle pedal
or apply the brakes to decelerate [16]. According to the previous research [16], the target vehicle is generated by
combining the preceding vehicle in the originating lane and the meaningful vehicle in the adjacent lane. Based on
this research, the clearance and relative speed between the subject vehicle and the meaningful vehicle in the
adjacent lane are integrated with those between the subject vehicle and the preceding vehicle in the originating lane
for the generation of the target vehicle’s information. For instance, if the width of the environmental envelope for



e, at the prediction time step j is expected to be smaller than minimum safety width as shown in Fig. 8, then the

weighting factor, @, , to determine the target vehicle’s state for the longitudinal acceleration control is determined
as shown in (15).
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Fig. 5 Determination of the target vehicle for the longitudinal acceleration control in a lane keeping
mode
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where, TTC means the time to collision and x indicates the non-dimensional warning index [1]. n in (15)
indicates the prediction time step at which the width of the environmental envelope for e, is smaller than

minimum safety width.

Consequently, the integration between the preceding vehicle in the originating lane and meaningful vehicle in the
adjacent lane is defined as shown in (16).
C.(® C,meaninga (1) Cinane (1)
Vx‘target(t) =0 - Vx‘meaningful(j‘t) +(17wu<)' Vx,lnlane(t) (16)
@, arger (1) 8, meaningrr (1[1) 8, piane (1)
In the case of a lane change mode, the target vehicle’s states are determined by the integration between the
preceding vehicle and the surrounding vehicle in the adjacent lane of the lane change direction. For instance, if the
lane change direction is left, then the target vehicle’s states are determined by the integration between the preceding
vehicle in the originating lane and the surrounding vehicle in the left lane. The weighting factor for the integration
in a lane change mode, @, , is defined as shown in (17). Then the integration for the determination of the target
vehicle’s states to control a longitudinal acceleration during a lane change mode is defined as shown in (18).
e
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where, the subscript ‘side-lane” means the vehicle in the adjacent lane to which the subject vehicle changes the lane
from the originating lane and W, _, is the road width which could be known from the vision sensor.
After the determination of the state of the target vehicle for the control of the longitudinal acceleration, then we
could define the environmental envelope to guarantee the longitudinal safety. In order to avoid the collision over a
finite prediction horizon, the clearance between the subject vehicle and the target vehicle should be larger than
minimum safety longitudinal clearance, C, . , as shown in (19).

C(KD)>C, 0, k=1..,N (19)

To satisfy the condition described in (19), the constraint of the distance error between the actual clearance and
desired clearance could be defined as follows:
Ad(K|t) 2 C, e — Caee(K[) =7, -v,, k=L1...,N, (20)

Moreover, for the improvement of the longitudinal safety, the relative speed between the subject vehicle and the

(0<aoy <1) (17

X, safe



target vehicle should be larger than the threshold of the relative speed, Av, .., as shown in (21).

AV, (K[t) > Av k=1...,N (21)
Consequently, the environmental envelope to guarantee the longitudinal safety could be represented as the linear
inequality as shown in (22).

100 -7, -V,
. Xlong,d (k‘t) 2 Glong,min’ k :1 """ Np Where’ Hlong = |:0 1 0:|’ Glcng,mln = |:Avh _ :| (22)
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H
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V. Robust MPC based Controller design

As mentioned in Section I, distributed control architecture which is composed of the lateral control law based on
robust MPC approach and the longitudinal control law based on robust MPC approach is adopted. In this research,
the sampling time, T, is chosen as 0.1 second and the length of the prediction horizon, N, is chosen as 20. These

receding horizon optimization problems are solved at each time step and the first terms of the optimal control
sequences are applied to the system. Then receding horizon optimization problems for a shifted prediction horizon
are solved to obtain new optimal control inputs at next time step. To solve MPC problem in MATLAB, CVXGEN
which is designed to be utilizable in MATLAB is used as solver [17]. The MPC problem is defined using CVXGEN
syntax, and the CVXGEN returns convex optimization solver for the defined optimization solver for the defined
optimization problem.

A. Background on Robust Model Predictive Control

In this section, we present the background on robust MPC which is used to decide the desired control inputs for the
robust control performance. The control problem based on robust MPC is classified into a feedforward control input
for the nominal system and a linear feedback control input to reduce the error between the actual state and the
nominal state predicted by model of the plant.
Then the control law can be written as follows:

u(k) = (k) + K (x(k) - x(k)) =T (k) + Ke (23)

where, K e R™" is the linear state feedback gain and e := (x(k) — X (k)) is the error between the actual state and the
predicted nominal state. In this paper, the control law of the state feedback gain is LQR.

B. Desired Steering Angle Decision

As mentioned above, in order to obtain the desired steering angle to keep the vehicle in the safe driving envelope
while satisfying the robustness of the control performance under model uncertainties and exogenous disturbances, a
feedforward steering input for the nominal lateral dynamics model and a feedback steering input for the
compensation of the error between the actual states and the predicted nominal states should be integrated. For the
determination of a feedforward steering input, we design the cost function as follows:

Np—l Np—z T Np—l
3= Ko (K[ W R (/[ + R sy D [ (k +10) = G ()], + (H K (N[0 = Vi ) W, (H R (N[0 = Yo )+ Ri X [T (D)

k=1 k=0 k=0
where, (24)

[0 01 O}
H=
0001
where, W

is predefined weighting matrix, which penalize the differences between states and zero, WNP is

cost,lat
predefined weighting matrix to reduce the differences between the final position of the vehicle over a finite
prediction horizon and the desired position, R, and R, ,, are predefined weighting matrices for the reduction of

lat
magnitudes of steering angle control sequences and the rate of change in steering angle control sequences
respectively. These matrices are positive-definite symmetric. WNp is defined as shown in (25).
Yies =[0 Wigag ]T . Left Lane Change

Yes =[0 W, ] : Right Lane Change

Since the actuator has a limitation to operate, the control input and there derivatives need to be constrained. These
constraints are given as follows:

(25)



ulal(k‘t)‘gulat,max' k=0.--Np*l

(26)
U (K +18) = U (K[D)], < Spais k=0..N,-2

where, Uy, .. is the maximum magnitude of the steering control input and S, is the maximum magnitude of the

lat
rate of change of the steering control input.
In order to ensure the stability of the vehicle, the side slip angle and lateral acceleration should be restricted for
the stability of the vehicle. Therefore the condition for the stability of the vehicle can be written as follows:
|BK[D)|< B =tan*(0.0249), k=1...,N (27)

P

(28)

P

where, x denotes tire-road friction coefficient and A . is the threshold of the lateral acceleration, which is

chosen as 8m/s?.
The constraints for the stability of the vehicle which are defined in (27) and (28) can be represented as the linear
inequality as shown in (29).

k=1...N_ where, Hveh:[l 00 0}, Gvehw:[ﬁmﬂ (29)

Hveh *Xiat (k‘t)‘ < Gveh‘max ’

0100 Voo

Then MPC problem for the determination of the feedforward steering input could be defined by combining (5),
(14), (24), (26) and (29) as follows:
min (24)
st. (5),(14),(26),(29)

In order to design the robust MPC while reducing complexity, the effect of model parameter uncertainties and
exogenous disturbances on the linear dynamics model in (5) is represented as an additive equivalent disturbance.
Then the lateral dynamics model including the additional disturbance term is written as follows:

Xt (K +1) = Ay X(K) + By qu(k) + F tata Pret (K) + Wiy q (31)

where, w, . €R* is the additive equivalent disturbance on the lateral dynamics model. The equivalent

(30)

disturbance w,,, is unknown but assumed to be bounded as shown in (32).

Wlal‘eq € Wlal !

Wlat‘eq

< [O.OS,O.OS,O.S-L,OJ} (32)
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C. Desired Longitudinal Acceleration Decision

Similar to the lateral control law, the longitudinal control law should be designed to obtain the desired
longitudinal acceleration to keep the vehicle in the safe driving envelope while ensuring the robust control
performance. Therefore the desired longitudinal acceleration is determined by combining a feedforward input for
the nominal longitudinal dynamics model and a feedback input to attenuate the effect on the system by model
parameter uncertainties or external disturbances.

In order to determine the feedforward control input for the longitudinal control of the vehicle, we design the cost
function as shown in (33).

Ny Np-1
Jlung = z Xlong (k‘t)TWcosi,long YIung (k‘t) + RIong z
k=1 k=0

Ny-2

+ RIong JAu Z

k=0

Ui (K[1)], +

UIcng (O‘ t) - ax

Uiong (K +1J1) = Ty (K[1)], (33)
where, W,

cost,long

is predefined weighting matrix to reduce the magnitudes of longitudinal acceleration sequences and R

is predefined weighting matrix for the minimization of the differences between states and zero, R

long
long,Au IS
predefined weighting matrix to prevent abrupt change of longitudinal acceleration in sequences. These weighting
matrices are positive-definite symmetric.

The constraints on the range of the longitudinal acceleration control input and change rate during a finite
prediction horizon are written as follows:
Trong.min < Tiong (K[1) < Tigpg s~ k=0...N 1

- - - (34)
Uiong (K +1) = Ty (k)| < k=0...N,-2

long *

and ulong.max

where, U,

long,min

are the minimum and maximum magnitude of the longitudinal acceleration control



input respectively. S, is the maximum magnitude of the rate of change of the longitudinal acceleration control

long
input.

Then MPC problem for the determination of the feedforward longitudinal acceleration input could be formulated
by combining (10), (22), (33) and (34) as follows:

min (33)
st. (10),(22), (34)

In order to determine a feedback control input for the longitudinal control of the vehicle, an additive equivalent
disturbance is included in (10) to represent the effect on the system by model parameter uncertainties or external
disturbances.

Xiong (K 1) = A 4 Xiong (K) + Bion 4Uiong (K) + Fiang 18 rge (K) + Wi g (36)

(35)

where, w, e R* is the additive equivalent disturbance on the longitudinal dynamics model. Similar to the

longeq
equivalent disturbance on the lateral dynamics model, it is assumed that the equivalent disturbance on the
longitudinal dynamics model, w, is unknown but bounded as shown in (37).

ong eq !

eW,

long *

<[0.05,0.1,0.05] @37

Wlong eq VVlong eq

VI. Vehicle test results

The proposed automated driving control algorithm is evaluated through computer vehicle tests. In order to evaluate
the proposed algorithm on a real test vehicle, Hyundai-Kia Motors K7 is used as a test vehicle platform. Figure 6
shows the test vehicle configuration. In order to measure DLC, heading angle and road curvature, a Mobileye
camera system is equipped on the test vehicle. The proposed algorithm has been implemented on “dSPACE
Autobox”, which is used for the real-time application and equipped with a DS1005 processor board. Delphi radars
are equipped on the test vehicle to perceive surrounding environments. The hardware components mentioned above
communicate through a CAN bus.

Vision Sensor .
( Mobileye : C2-170 ) Rapid Control

y Prototype Tool
‘ _ : Autobox

Rear-side Radar
[ Delphi : 24GHz )

Base Platform
: K7 (Hyundai-Kia Motors)

Fig. 6 Test vehicle configuration
The test track is a straight road. The road-tire friction coefficient is assumed to be 0.85, since the road of the test
track is a dry asphalt road. Two cases of experiments have been conducted. In order to evaluate the performance of
the proposed algorithm under lane change situation, the scenario of experiment is designed to evaluate the
performance of the proposed algorithm under overtaking situation as shown in Figure 7.

Front-side Vehicle #2
Vx,front-side#z =40km/h

pmmmmeo OTD--

7 “ N\
D---- Tr-- -
Subject Vehicle Front Vehicle #1
Vx,subject: 50km/h Vironts = 40km/h

Fig. 7 Experiment scenario for overtaking



The simulation results are presented in Figure 8. As shown in Figure 8, it can be known that the controller shows
quite similar performances to the human driver while changing lane. Based on these results, it has been shown that
the proposed algorithm could reflect human driver’s driving characteristics. It means that the proposed algorithm
could provide acceptable ride comfort in general driving situations. Since lateral offset is measured by camera
sensors, lateral offset is plotted as discontinuous as shown in Figure 8-(a). Figure 8-(b) and (c) depict steering angle
and longitudinal acceleration comparing results between the human driver and the controller. Lateral acceleration

has reasonable magnitude as shown in Figure 8-(d).
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(b) Comparison of the steering angle between the driver and the controller

e e R e : -
N " Driver
Controller

Ax [m/s7]

Time [sec]

(c) Comparison of the longitudinal acceleration between the driver and the controller



Ay [m/sz]

I
|
|
.
|
|
|
|
|
|
|
i
15
Time [sec]
(d) Lateral acceleration

Fig. 8 Comparison between the driver and the proposed algorithm under overtaking situation

VII. Conclusion

A robust MPC based vehicle speed and steering control algorithm has been developed to enhance safety and
ensure constraint satisfaction under model uncertainties and external disturbances. In order to cope with potential
risky situation, not only current states of surrounding environment but also potential risky behaviors of that during a
finite time horizon are considered simultaneously in determining the desired driving mode and the safe driving
envelope. Then distributed control architecture based on robust MPC approach is used to determine the desired
steering angle and desired longitudinal acceleration separately while satisfying reliability and reducing a
computational burden.

In order to verify the effectiveness of the proposed control algorithm, computer simulations have been conducted.
The simulation results show that the proposed control algorithm enhances safety with respect to the potential risk
and provides permissible ride comfort. Furthermore it has been shown that robust vehicle control performance can
be obtained in the presence of additional disturbances by using the proposed algorithm.

In the future, we should verify the performance of the proposed algorithm via vehicle tests.
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ABSTRACT

Transportation systems around the world are showing signs of strain, and safety, congestion, and energy usage are
significant societal problems. In the past, transportation professionals have attempted to solve these problems
through largely "siloed" approaches focused on vehicle crashworthiness, infrastructure design, or energy efficiency.
These separate approaches have had success, however transportation problems continue to grow.

The University of Michigan has formed the Mobility Transformation Center (MTC) to create a consortium of
industrial, government, and academic partners who comprise an ecosystem for enabling a future transportation
system that leverages connected and automated technologies. This group has convened to define a potential
ecosystem, identify and prioritize key research needs for enabling a holistic approach, identify key technology and
policy hurdles with paths forward, identify business drivers and opportunities, as well as identify gaps in standards,
testing, facilities, and risk management schemes. A key goal is to lay a foundation for, and demonstrate, a
commercially viable connected and automated transportation system in Ann Arbor by 2021.

To achieve these goals, MTC is designing, building, and deploying significant test beds, facilities, and deployments
so that real-world results can be incorporated into this process in a rapid fashion.

This paper presents a summary of current status and early results of this effort, to the extent that they are ready for
dissemination. This includes a description of the role various industrial sectors may play in a future transportation
system, as well as identified first-level research gaps.

Included is a high-level description of strengths and weaknesses of various technologies (vehicle sensors and
communication, infrastructure sensors and communication, infrastructure operating systems, data systems, etc.) and
their ability to address key transportation problems and opportunities.

Lastly, a summary of the current status of the physical test beds and deployments will be included.

The authors seek to further the discussion of the potential roles various transportation system components and
industrial sectors, as well as the roles for government and academia. Additionally, the authors hope to generate
meaningful discussion on the importance of a systems approach to solving key transportation problems, including
proper technology planning, evaluation and deployment to ensure that results address the widest range of societal
needs as possible.



INTRODUCTION

Transportation systems around the world are showing signs of strain, and safety, congestion, and energy
usage are significant societal problems. In the United States 32,719 people were killed in motor vehicle
crashes in 2013, and 2,313,000 were injured [;;. While these were decreased from 2012, motor vehicle
crashes remain as a significant and persistent societal problem.

Similarly, traffic congestion is a well-known persistent problem in many U.S., and international cities,
with significant impact on national economy and quality of life. It is estimated that congestion costs the
U.S. over $120B annually, and causes 2.9B gallons of wasted fuel 5. Unless unchecked, there are
expectations that these costs and negative effects will increase as the population rises in the next 50 years.

In the past, transportation professionals have attempted to solve these problems through largely "siloed"
approaches focused either on vehicle crashworthiness, infrastructure design, or energy efficiency. These
separate approaches have had success, however transportation problems continue to grow.

New technologies including communication systems, automation, and “big” transportation data systems
are being developed to address various problems. For the high-level strategic purposes of this paper, the
following definitions are employed:

Connected — technologies that enable direct or indirect communication to and between transportation
agents including vehicles, infrastructure, pedestrians, operation centers, and other entities. These include
DSRC, cellular, Wi-Fi, satellite, and other media, and enable many applications and functions including
navigation, driving information, infotainment, V2V, V2I, 121, V2P (pedestrian), mapping, amongst
others.

Automated Vehicles — technologies that enable automatic operation of some or all safety-critical control
functions, including steering, throttle, braking, and motive power selection (forward, reverse, and other),
and at various levels of occupant involvement or monitoring. Generally, the NHTSA-defined levels of
automation will be used 3.

“Big” Transportation Data — data systems and technologies that gather, amalgamate, analyze, and report
on numerous significant transportation and related data streams, such as vehicle-based data, telemetric
data, fleet data, location data (to the extent that privacy is appropriately protected), operations data, maps,
video data, weather, crash data, fuel usage data, amongst others. These systems must also address key
components of cybersecurity and privacy.

The overarching premise is that a systems approach, encompassing all three technologies listed above,
must be employed to ensure that society receives the maximum benefit from these technologies. Each of
these are extremely complicated technologies, especially when applied to the very large scale of a
national transportation system. If any of these are developed in isolation, we will not fully address the key
needs of a future transportation system: safety, mobility, and energy efficiency.

As an example of this systems approach philosophy, MTC embraces the idea that these Connected and
Automated vehicle technologies will not only function well together, but will developed simultaneously
and be very complementary to maximize the functionality and benefit of each. MTC has subjectively
considered the relative pros and cons of various applications of these technologies, and the results are
shown in Table 1. Generally connected technology is relatively inexpensive, provides otherwise
unavailable information on road partners and conditions, and provides a longer range “sensor” data
compared to typical radar, camera, and lidar sensors. On the other hand, connected technology requires a



significant concentration of equipped vehicles/infrastructure, still relies ultimately on actions of human
drivers, and can be perceived as a relinquishment of privacy.

Generally, automated technology can reduce dependencies on human action (and presumably error),
doesn’t rely on equipage of other vehicles, and has a high consumer interest. On the other hand for the
highest levels of automation, the cost of sensors and onboard computing is quite high (which may limit
broad adoption), the technology is not easily retrofitable and is not proven, and requires significant policy

decisions and potentially changes for licensing, insurance, enforcement, etc.

pros cons
Connected
V2v proven effective for safety - avoiding collisions relies on driver reaction
inexpensive - can be applied on many vehicles relies on other vehicles (critical mass)
retrofittable requires security system
sees around corners perception of privacy loss
sees through fog/rain/snow
sees at longest sensor range
sees multiple vehicles ahead
knows much more about road partners
+V2I enhances mobility thru adpative signal control requires infrastructure investment
enhances energy-use through eco routing/timing |requires added security system
enables weather apps further perception of privacy loss
enables 0/1st level eco-driving
enables pedestrian detection in crosswalk
enables smart parking
Automated
AV relies less on human intervention expensive - can't be applied on many vehicles

doesn’t rely on other vehicles

technology not fully ready

added driver convenience

not yet proven reliability

high customer interest

not retrofitatable

potential for improved safety, unproven

requires security system

potential for improved eco-driving

requires policy decisions/changes

unclear if all veh data can remain private/anonymous

may add VMT due to convenience

Automated + Con

nected

AV + V2V + V2| |all advantages above most disadvantages above
adds reliability to sensing & decision making added cost
enables platooning at close following distance added proveout requirements
enables safer lane changing and passing requires comprehensive security system
communicates locations of map changes/updates
communicates road construction / maintainence
enables 2/3/4th level eco-driving
enables L4 driverless (on most roads)
all + V2P enables safe urban operation around pedestrians [requires smart phone/device solution

enables rapid retrofit system

Tablel.

Comparison of relative pros and cons of various applications of technologies.

MTC has also considered, albeit subjectively, the relative future potential capabilities for these
technologies to deliver key benefits in the form of core transportation metrics, namely safety, mobility,
environment, and convenience, shown in Table 2. Generally, both technologies provide some potential
benefit in all of these categories, though primarily to lower costs and greater penetration, connected
technology provides a greater portion of safety and mobility benefits. While automation, primarily due to



the ability to relieve the driver provides significant convenience, especially at the highest levels of
automation. Both technologies may play an equal role in delivering environmental benefits, and future
research programs should strongly consider inclusion of a focus on environmental and energy saving
opportunities for these technologies.

Because of these significant benefits, and in spite of the challenges, MTC has concluded that it is very
likely, perhaps necessary that both technologies continue to be developed and deployed, along with
accompanying data systems. This dual development will take advantage of significant synergies between
the technologies and provide significant opportunities for benefit in key transportation metrics.
Ultimately the expectation is that the benefit will outweigh the investment costs in both vehicles and
infrastructure.

Safety Mobility | Environment | Convenience
Connected
A
V2|
Automated
12 2 1
13 0
L4 2 2 2
Con+Auto 10 10 10 10
Table 2.

Relative benefit levels for Connected and Automated technologies.
(Higher number indicates increased benefit)

ESTABLISHING an ECO-SYSTEM

The University of Michigan has formed the Mobility Transformation Center (MTC) to create a
consortium of industrial, government, and academic partners who represent a potential ecosystem for
enabling a future transportation system. This group has convened to define a potential ecosystem, identify
and prioritize key research needs for enabling a holistic approach, identify key technology and policy
hurdles with ways forward, identify business drivers and opportunities, as well as identify gaps in
standards, testing, facilities, and risk management schemes, all with the goal of fielding a significant
demonstration of a working system in the next 6 years.

After surveying the current state of development of the above technologies, the following industries were
identified as critical to a future transportation system:

=  Auto and truck manufacturers =  Telecommunications & communication
= Auto components and systems services
= Consumer electronic devices



= Big data management and mapping = Public transportation

=  Freight movement and logistics = Payment systems

= Traffic control systems =  Parking operations and systems
= Insurance

In parallel with industrial efforts, governmental bodies that have operational and jurisdictional roles at the
national, state, city, and local levels are critical stakeholders. Lastly, academia must play a critical role in
identifying, developing, and evaluating key technologies and as agents of change. Together, by including
stakeholders from all of these realms, MTC has formed a true public-private partnership to further the
technology, identify policy issues, and where needed, changes, spur innovation, provide living
laboratories to test and evaluate technologies, and prototype an entire working system to identify at least
one path forward to large-scale deployment.

KEY RESEARCH NEEDS

The MTC has undertaken an extensive effort to identify, understand, categorize, and prioritize the state of
art of the three key technologies from the viewpoint of members and stakeholders. Based on this effort
and the resulting state-of-art assessment, a number of research thrusts were identifed in two different
categories:

Technology Policy

= Connectivity (V2X) » Congestion Management
* Automation =  Consumer Acceptance

=  Cybersecurity B = Public Policy

: gastah,:igl)p fizblhty = Urban Planning

*  Human Fa};tors * Infrastructure Design

*  Energy Use & Emissions = Social Implications

»  Standards = Legal Issues

[ Regulatory Issues - BllSlIlCSS MOdGlS

= Compliance = Payment Methods

Based on the above research thrusts, MTC has collected, brainstormed, and refined a number of research
questions that need to be addressed to enable an accelerated and meaningful step towards significant
demonstration. This full list of research questions is too long to reproduce fully in this report. And of
course not all of these research topics can be addressed at one time, or in the context of pre-competitive
research. Therefore MTC, along with its Leadership Circle Members, has undertaken a prioritization
effort to identify the first and most critcal research thrusts and research questions. These are shown
below, in appropriate categories.

Connected Technologies

What applications, beyond safety, bring day-one value to the users and stakeholders?
How are safety benefits extended to all road users including pedestrians?

What is the business model of connected infrastructure deployment?

How will a full-scale Security Credential Management System (SCMS) function?

Vehicle Automation




How can automated vehicle technology be tested and validated to determine readiness for
deployment?

What role does the built roadside infrastructure play in a connected + automated environment and
specifically what upgrades or updates, if any, would be required?

What role does the data and mapping infrastructure play in a connected + automated environment
and specifically what upgrades or updates would be required?

What is the process to achieve broad accepatnce and engagement with the community?

“Big” Transportation Data

What are the key cybersecurity risks and needs for automated vehicles?

What data sets are required for connected + automated vehicles and what will be the tools and
analytical approach?

What data should be collected, and how are they useful for different purposes?

How can the data drive entrepreneurship and new business models?

How can the data support product development?

What any changes if any are required to our legal system to maximize the value to connected +
automated? State vs. Federal, Shared liability regimes, etc.

How will fault be assessed in Automated Vehicle (AV) crashes?

What are the key privacy impacts of automated vehicles?

Do we need an ethics decision-making model for vehicle automation?

Customer Acceptance

How do you define and measure value & customer acceptance?
How do you define and measure value for all stakeholders (municipalities, etc)?

Standards

What are the gaps in standards gaps for CAVs? which are a priority?

Are existing regulations impediments to testing of connected and automated vehicles?

What is the role of simulation in the prove-out of automated vehicle standards?

Is a new testing methodology required to test the safety of connected and automated vehicles
(confirmation of good events)?

Societal Impacts

What is the implication of AVs on traffic congestion and VMT?

How does a fully evolved connected and automated environment impact congestion, mobility,
energy, public health, etc?

What is the behavioral and economic impact of automated transportation?

How will AVs impact urban transportation and design?

What are implications for AVs on the aging population?



MTC has begun conducting internally-funded research projects on some of these, and other,
questions and topics. The first round of research results and tools will be available in the August
2015 timeframe, and the second round was kicked off in April 2015. Results will discussed at MTC
Annual Congress, currently being scheduled for September 2015 in Michigan.

DEVELOPMENT and DEMONSTRATION PLANS

MTC believes that there are a number of significant, complex, and often intertwined questions and
unknowns that need to be addressed to develop and deploy these technologies. These questions
include those listed above, as well as many others. If left to standard, and individual, product
research and development processes, these questions would likely require a decades-long product
rollout. But given the significant potential benefits for transportation, MTC believes that these
processes should be accelerated. MTC is promoting acceleration through collaborative efforts, and
by fielding meaningful and ambitious model deployments to provide “living laboratories” and by
creating unique purpose-built test facilities. MTC has undertaken work to build three “pillar” model
deployments and one test facility.

Pillar 1: Connected Ann Arbor

MTC, with the collaboration of the City of Ann Arbor, will build on the success of the USDOT-
funded Connected Vehicle Safety Pilot Model Deployment and expand that deployment up to 9,000
connected vehicles, and over 65 infrastructure nodes. This deployment will shift focus towards V2I
applications, specifically those that can provide “day-one” benefits to drivers, road operators, cities,
and importantly, vulnerable road users including motorcyclists, pedestrians and bicyclists. Figure 1
shows the geographic layout of this concept.

Pillar 2: Connected Southeast Michigan Initial Deployment

MTC, in a partnership with Michigan Department of Transportation (MDOT), member companies,
and others, taking advantage of the region’s uniquely large number of V2X activities and
stakeholders, will create the first large scale connected transportation deployment in the United
States. This deployment will leverage the MDOT Connected Corridor Program, as well as encompass
the four existing test beds in the region, including Ann Arbor, Novi/Farmington, Telegraph Road,
and City of Detroit. This deployment will focus also on V2I applications, especially to quantify
benefit for road operators and municipalities for future investment decisions. Additionally, this
deployment will support the auto industry by provding a dense connected environment to finalize
development of V2V technology ahead of a NHTSA mandate. This deployment will also provide a
unique opportunity to prototype and test a fully functional SCMS that can be scaled nationally.
Lastly, this deployment will support early research and product development of AVs. Figure 2 shows
the geographic layout of this concept.
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Pillar 2: Connected Southeast Michigan Initial Deployment

Pillar 3: Automated Ann Arbor

MTC, in collaboration with the Leadership Circle of Companies, MDOT, and with the City of Ann
Arbor, will utilize the dense connected Ann Arbor deployment to deploy an on-demand
transportation service including 2,000 automated vehicles (AVs), including some number of levels 2,
3, and 4 vehicles. This transportation service will include the movement of people and goods, and
will serve as a prototype for a future transportation system that will provide significant transportation
benefits to the city and community. This deployment will include a fully-developed simulation
platform (sensor, vehicle, driver, communications, infrastructure, environment) to complement the
on-road environment. This deployment will leverage a to-be-developed “smart city” data and digital
infrastructure, including backhaul and functions. It is expected that this deployment will also provide



an incredibly rich environment for product research and development, as well as addressing both
technical and policy issues and questions.

Purpose-Built Test Facility: M City

MTC believes that a combination of both test track and on-road testing will be required for full
development of high level AVs. Test tracks can provide a safe, controlled, and repeatable
environment for early development without putting an unknowing public, especially pedestrians, at
risk. And on-road testing is required because no track or simulation can anticipate the full plethora of
conditions and scenarios that human drivers negotiate in the real world.

Therefore, MTC has designed and constructed a new, one-of-a-kind purpose built test facility for
connected + and automated vehicles, named M City. This facility is designed to be a condensed, built
to standard, simulation of a US city that will appear as a real environment to AV sensors. It is
located directly adjacent to the Pillar 1 Connected Ann Arbor environment. Figure 3 shows the
concept model of M City.

Figure 3. Conceptual model of M City.

M City includes an urban area with 13 intersection of various geometric designs, various road
surfaces, curves of varying radii and elevation, round-about, traffic circle, building facades of
varying geometry and materials, various traffic control devices and signage, pedestrian crossings and
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bike lanes, street lighting, and mechanized pedestrians and bicyclists, amongst other features. It also
includes a simulated highway stretch with on and off-ramps, multiple surface materials and
markings, overhead and post-mounted signage, etc. Additionally, like the Automated Ann Arbor
deployment, a full complement of simulations and tools will accompany the physical test facility.

Civil works and construction for this facility were completed in November 2014, with equipage of
traffic control devices, lighting, and building facades scheduled at the time of this writing. The
facility is expected to be fully operational by July 2015. Figure 4 shows an aerial photograph and
layout of M City.

Figure 4. Aerial photograph of M City.

MTC and its private and public partners intend to utilize these deployments and this facility, and any
others like it around the world, to conduct research and aid development of harmonized testing
regimes, criteria, standards, and even future regulations that can speed the deployment of AV
technology. MTC welcomes collaborations with other research and development stakeholders to
achieve this goal.
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CONCLUSIONS

MTC has been formed to accelerate the development and deployment of connected and automated
vehicle technologies, and believes both will be needed, and are largely complementary, to achieve
significant improvements in our future transportation system. Many significant technical and policy
questions remain to be answered, and model deployments will be a powerful, and likely necessary,
tool to address these questions and find a way forward.
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ABSTRACT

Tracking multiple road users is playing a significant role in autonomous vehicles and advanced driver assistance systems.
Different from Multiple Target Tracking (MTT) in aerospace, the motion of the ground vehicles is likely constrained by their
operational environment such as road and terrain. This information could be taken as additional domain knowledge and
exploited in the development of tracking algorithms so as to enhance tracking quality and continuity. This paper proposes a new
MTT strategy, Multiple Hypothesis Tracking using Moving Horizon Estimation approach (MHE-MHT), for tracking ground
vehicles aided by road width constraints. In this strategy, tracking association ambiguity is handled by MHT algorithms which
are proved as a preferred data association method for solving the data association problem arising in MTT. Unlike most of the
MTT strategies, which solve target state estimation using Kalman filter (and its derivations), we propose a new solution using the
moving horizon estimation (MHE) concept. By applying optimization based MHE, not only nonlinear dynamic systems but
additional state constraints in target tracking problems such as road width can be naturally handled. The proposed MHE-MHT
algorithm is demonstrated by a ground vehicle tracking scenario with an unknown and time varying number of targets observed
in clutter environments. Using the optimal subpattern assignment metric, numerical results are presented to show the advantages
of the constrained MHE-MHT structure by comparing it with the Kalman filter based MHT.

Keywords: Multiple target tracking, Multiple hypothesis tracking, Moving horizon estimation, Inequality constraints,
Autonomous vehicles

INTRODUCTION

Multiple target tracking (MTT) is an important research topic in automated vehicle field. Although a number of
MTT algorithms have been developed, e.g. [1], it is still a quite challenging task to implement MTT in realistic
situations, especially when suffering from low visibility of sensors, high clutter and high target density. One
promising approach that has drawn a great deal of attention recently is to improve the performance of tracking
algorithms by utilizing trajectory and other constraints/knowledge imposed from environments including available
road maps. It has become a consensus that prior nonstandard information such as target speed constraints, road
network and terrain information can be exploited in the tracker to reduce estimaiton error and provide better tracking
accuracy [2]. For instance, a vehicle travelling on a road is expected to move within the road boundaries and follow
its speed limitation. In other words, the performance of tracking systems is often limited if ignoring or not taking use
of this additional source of informaiton. Even for the cases of low signal quality with high clutter density, the
incorporation fo such constaint information is sufficient enough to get a relatively good tracking performance [11].

A. Constrained state estimation

One effective approach of solving the road constrained MTT is to incorporate the constraint-related information into
a standard filter algorithm (state estimation process) as state constraints. For most MTT structures, Kalman filtering
and its variations are commonly used to estimate the state of a target based on its state process and measurement
models. However, when the road state constraints cannot fit easily into the structure of a Kalman filter, they are
often ignored or dealt with heuristically [3Although constrained Kalman filter methods are relatively easy in
implementation, these methods have several disadvantages even for basic linear and equality constraints [3].
Recently, some other methods, for example, see [7], [8], [9], [10], are also developed based on optimization and
truncation approaches. The majority of filters proposed to solve the constrained estimation problems focus on linear
(in)equality or nonlinear equality constraints. A little research has been conducted on nonlinear inequality



constraints so far. However, (non)linear inequality constraints have played an important role for most tracking
scenarios in ground vehicle tracking problems,, e.g. roundabout boundary.

More specifically, Rao et al. [10] have proposed a constrained state estimation for nonlinear discrete-time systems. It
is based on a moving horizon concept based state estimation known as moving horizon estimation (MHE). The basic
strategy of MHE in determining the optimal state estimation is to reformulate the estimation problem as an
optimisation problem using a fixed-size estimation window. This method has been widely used in chemical
engineering. Other applications include hybrid system, distributed, network system, large-scale system and so on.
However, the implementation of moving horizon approach based estimation method in target tracking is still
relatively an uncharted area. Advantages for using MHE to solve target tracking state estimation could be
significant. Since the method is optimization based, road constraints or similar in target tracking problems can be
naturally handled by MHE as additional (non)linear and/or (in)equality constraints on linear or nonlinear systems
under consideration. In addition to state constraints, MHE is also able to incorporate constraints on the state process
and/or observation noises. In vehicle tracking, such constraints are typically used to model bounded disturbance or
truncated distribution/density representing the influence of the operation environment on vehicle movement such as
vehicle acceleration and deceleration.

Another advantage of using MHE as a state estimation method in target tracking is that it always considers a
window of N latest measurements. Such feature is very meaningful in target tracking problems especially when
targets are occluded by each other/static obstacles which leads to no reliable measurement at specific time step/steps.
MHE utilizes the measurements in a receding horizon window could reduce the effect of unreliable measurements
such as in the above situation in state estimation. Simulation results in [4] show that MHE achieves the smallest
estimation error for nonlinear systems and nonlinear constraints. Theoretically, for a linear system without
constraints and with a quadratic cost, MHE reduces to Kalman filtering algorithms when an infinite horizon window
is considered.

B. Multiple target tracking problem

The problem of estimating the position of moving targets, also known as MTT, has become an important part in
autonomous vehicles and advanced driver assistance systems. Knowledge about the state of moving objects can
be taken as powerful information to improve the level of autonomy for vehicles. MTT techniques are required in a
number of automotive applications including Advanced Driver Assistance Systems (ADAS), Collision Avoidance
Systems, and Vehicle-automation Systems. Such systems can incorporate functions such as adaptive cruise control,
lane keeping, precise manoeuvring, pedestrian detection and so on [12] aiming for achieving an improved collision
avoidance behaviour and safe road driving even in populated environments. By using state-of-the-art on-board
sensors such like radar, lidar, GPS and camera vision systems together with accurate global and local maps, different
levels of automation could be achieved in automotive applications, from individual autonomous functionalities to
fully automated vehicles.

Several approaches for MTT have been developed over the last decades, overviews can be found in Pulford [13] and
Christophe [14]. Basically, these methods can be divided into two categories — the data association based ‘classic’
methods and the more recent finite set statistics (FISST) based approaches. The data association based methods are
largely based on probability, stochastic processes and estimation theory. Existing methods include Nearest
Neighbour Standard Filter (NNSF) [15], Global Nearest Neighbour (GNN) approach [16], Joint Probabilistic Data
Association (JPDA) [17] and Multiple Hypothesis tracking (MHT) algorithm [18]. Among them, MHE is a more
complex approach that considers data association across multiple scans and multiple hypotheses. In other words,
MHT algorithm attempts to keep all possible association hypotheses over multiple frames of data. This results in an
exponentially growing number of hypotheses and thus a NP-hard problem. Cox [19] in 1997 developed an efficient
implementation by using polynomial time optimization algorithm to find the k-best solutions to an assignment
problem along with pruning and merging techniques to reduce the number of low probability hypotheses. MHT
essentially keeps a set of multiple hypotheses and thus the assignment ambiguity will be resolved in future when
subsequent new observations are arrived. In this case, hard decisions are not made until they need to be with the fact
of using more information, rather than just the current data frame, thus possible error association could be corrected
when more evidences are updated. Such features along with the dramatic increases in computational capabilities
have made MHT a preferred data association method for modern systems [20].

Until very recent, a new concept has been introduced in MTT area - the random finite set statistics (FISST) [27].
While the conventional MTT methods try to solve the problem explicitly by expending single target tracking with
data association capabilities, the number of targets is also considered as a random variable (random set) and explicit
data association are avoided in FISST. The innovation of FISST is to model both the system and measurement as
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random finite sets (RFSs) and directly apply the Bayes recursion to these set-valued random variables and thus
solving the data association problem implicitly. In contrast to explicit data association methods, conventional
probability-mass functions are replaced by belief-mass functions. Probability hypothesis density filter (PHD) [28]
and multi-target multi-Bernoulli (MeMBer) [29] filter proposed by Mahler have successfully implemented the
FISST concept into MTT.

The objective of this paper is to derive an efficient strategy for road-constrained MTT. The main contribution of this
work is twofold: 1) a constrained MHE algorithm is proposed to solve the state estimation problem arising in road
maps assisted target tracking. Since MHE is an optimization based method, it provides a natural way to handle
nonlinear systems and incorporate various inequality constraints that may be difficult to be dealt with in other state
estimation algorithms. 2) The work is further extended from single target tracking into MTT. A new MTT strategy
for tracking multiple ground vehicles, namely MHE-MHT, is proposed, where moving horizon concept is combined
with MHT to incorporate various road and other environment information. In this combined strategy, tracking
association ambiguity is handled by MHT algorithms that have been proved as a preferred data association method
while constrained state estimation is solved by MHE.

The paper is organized as follows. After presenting the introduction in road map constrained MTT, MHE based
single target tracking is proposed for incorporating the road and other possible constraints. This work is further
extended to MTT by combing with MHT in the following section In order to verify the efficiency of the proposed
algorithms, simulation results of multiple target tracking with inequality road width constraints are presented .
Finally, this paper ends with conclusions.

MHE BASED TARGET TRACKING WITH ROAD CONSTRAINT

In the operation of automated vehicles, it is necessary to track all the nearby road users to make sure the safety of the
vehicles and other road users. Tracking road users is in fact a constrained estimation problem as the objects of
interest must be on the road. In this section, both the road constrained state estimation problem and MHE based
target tracking are described.

A. System specification

Consider the movement of objects of interest described by the discrete system:

X1 = f(x) + Wy (1)
and the observation equation:
Yie = h(x) + v (2)

where the time point k takes integer values, f: R™ — R" is the nonlinear system function and h: R™ — R™ is the
nonlinear measurement model. x; € R™ is the state vector, y, e R™ is the vector of available measurements. The
vectors w, € R™ and v, e R™ are Gaussian noises of the process and the measurement described by independent
pdfs p(w,) = N(0,Q) and p(v,) = N(0O, R), respectively, where Q and R are covariance matrices. It is
commonly assumed that the initial pdf of the state vector is known as a Gaussian pdf p(x,) = N(%,, P, ). Let
Fx, Gy and Hy be the Jacobian matrices with respect to x;, w; and measurement states, respectively.. Then the
system described in (1) and (2) is now equivalent to a linear system.

B. Target tracking road width constraints

As discussed in Introduction, ground targets are constrained when moving along a road network. Thus the
knowledge of terrain database and road maps can be used as constraints and incorporated into the tracking
algorithm. In most existing techniques, the road map constraints target motion in a one-dimensional physical
space [30] (by ignoring the road width) and incorporate them as equality constraints. This is fairly good
approach when an observer is far away from the moving objects such as in the scenario of unmanned aircraft
tracking a ground vehicle. However in automated vehicles, only objects in proximity are of interests. The road
width is comparable to the measurement accuracy (high accuracy sensors such as lidar). In this paper, road
network information is considered as road width inequality constraints and the target motion is restricted by
these physical constraints in both straight and curved segments.



Linear state inequality constraints Suppose that at each time step k, x; is subject to the following linear
inequality constraint:

a < Cp(xy) < by (3)

where C: R® = RS, ay, by, € R€, and the inequality < holds for all elements of the vectors and a; # by, Vk. C isa
known ¢ X n matrix, a, and b, are the known vectors each with a dimension of ¢ x 1 representing the lower and
upper road boundary individually, c is the number of constraints, n is the number of states, and ¢ < n. C; is
supposed to be of full rank. For target tracking with straight (linear) road width constraint shown in Figure 1, Eq (3)
is expressed as:

a0 <[] @

where T, ; is known as the transformation matrix representing the rotation from the global coordinate to the road
network local coordinate (with orientation along and orthogonal to the road) by rotation angle 6.

P X(g)

Figure 1. Straight road width linear constraint

Nonlinear state inequality constraints In the same fashion as the linear road width constraint shown in (3),
a circular or curved road segment shown in Figure 2 can be represented as a nonlinear inequality constraint as

n < ,¢x1,k2 + xZ'kz < I (5)

The road is defined by two arcs with radii r;and r, representing the lower/upper road boundary, with the center at
the origin of the Cartesian coordinate system. At each time step k, target position state x , and x,  are subject to
the following nonlinear inequality constraint

A Y

|| X(g)
o

Figure 2. Curved road width nonlinear constraint



C. Moving horizon estimation with constraints

MHE is an optimization approach based state estimation method that can take into account the constraint
during estimation process and provide a constrained estimate directly. Essentially, MHE follows Bayes rule
which maximizes the probability density function of the past states given the measurements in a fixed length of
horizon . Considering a horizon length of N past time steps, the joint conditional density is then given by:

p(XnlYy) < p(YylXy) p(Xn1Yos-n-1) (6)

where p(Xy|Yo.k-n—1) = PXk—ny - Xk—11Yor -» V—n—1), 1S the @ priori state density given the measurements
before the horizon; p(Yy1Xy) = pWk—ny -+ r Yie—1|Xk—n» - » Xi—1) IS the joint measurement likelihood function.
Assuming that Xy is a first order Markovian chain, the a posteriori joint conditional density of (6) is:

p(XnlYy) =c H;:l—zv p(yj|xj) H?:_I}—N p(xj+1|xj) P -y Yo:k-n-1) » (7

where ¢ is the constant and p(y;|x;) is the likelihood function for each measurement within the horizon.
p(x,-+1|x,-) is the state transition probability density function and p(x,_y|Ys.k—n—1) IS the a priori density of the
initial state of the horizon. For system (1) and (2), the state transition pdf is defined as p(x,+1 — f (x)):

P(Xrs1lxr) = Plwr) = PXier — Zis1) = Pesr — F(x0)) (8)
where w; is the system process noise defined by N (0, @), and the likelihood function is defined by p(y;, — h(xy))
PWilxi) = p(i) = p(yi = Ji) =P — h(x)) 9)

where v, is the measurement noise of N(0, R). Now by applying negative logarithm to joint density (7), we obtain
the MHE cost function for system (1)-(2) which is a quadratic programming (optimization) problem:

¢ = min_¢r(x {w ) =arg min  TEZF_yllwelly-1 + vielli-1 + Ty (2) (10)
oo}l 2wV oty ¢

where ||a||4 = a” Aa for quadratic form. x, = x(k; z, {a)]-};t;_N) denotes the solution of (10) for system (1),(2)

at time k with initial state z and process noise {wj};:;_N in horizon length. I._y(2) is referred to as arrival cost

which plays an important role in summarizing the effect of the past measurements {y, }%=)/~* as a priori information
on the state x7_y (I r_n(z) = —log(p(xx_n1Yox—n—1)) )- However, the initialization of MHE with the best
choice of the arrival cost term is an open issue. In this paper, the arrival cost is approximated using the EKF with
the following form:

e ny@ = (z- f;n—hzv) ' PT—N_l(Z - J?;n—hzv ) (11)

where ¥ is the optimal estimate at time T-N generated in (10) given measurements from time 0 to T-N-1, the
covariance matrix Pr_y is an estimate of the covariance of x", calculated by EKF. Typically any nonlinear filter
capable of propagating the conditional mean and covariance could be used to compute the arrival cost in MHE such
as unscented Kalmen filters, particle filters and cell filters.

Since MHE is an optimization framework based state estimation algorithm, the physical road width constraints
discussed above could be easily imposed on the MHE state variables.

MHE BASED MULTIPLE HYPOTHESIS TRACKING (MHE-MHT)

In this section, we first review the original MHT algorithm described by Reid [18] and Cox [19]. Then the formation
of MHE-MHT structure is set forth explicitly.

A. Multiple hypothesis tracking structure



The original MHT algorithm is a deferred decision logic which forms alternative association hypotheses in order to
deal with observation to track assignment uncertainties. According to Reid’s paper, the hypothesis based MHT
keeps the past hypotheses in the memory between consecutive time steps. MHT has the advantage of being able to
deal with track creation, confirmation, occlusion and deletion in a probabilistically consistent way. The original
MHT framework contains three main processes: hypothesis generation, probability calculation and hypothesis
reduction. When a new measurement is received, observations that fall within the gate region set a possible
measurement to track assignment thus an existing hypothesis is extended to a set of new hypotheses by considering
all possible tracks to measurements assignments. Several assumptions are made when generating hypothesis:

Assumption 1

(i) Each hypothesis contains a set of compatible observation to track assignments,
(if) Assignments are defined as ‘compatible’ if they have no measurements in common which means in each
Hypothesis, each measurement can only update with one of the existing tracks.

B. MHE-MHT framework

In Figure 3, we present the flow diagram of MHE-MHT algorithm. Let Y, = {yl"}:i"l denote the set of m,

measurements received at time k. Each of the measurement has three possible hypotheses:
e  The measurement starts a new target
e The measurement is a false alarm
e The measurement belongs to an existing target

1) Gate Check: First the distance between the predicted priori target and the current measurements is calculated
known as measurement prediction error/innovation. The prediction of target position is done by KF prediction
update and the distance is defined as the Mahalanobis distance:

(yk - ?k/k—1)T5k/k—1(J’1’f¢ — Vi k1) < Gating, (12)

where yX is the measurement m at time k, Yk k-1 is the predicted target position and Sy /,_, is the covariance of
innovation vector , S~ x_; = H Py H + R both are calculated by KF. Gating is a matrix of binary values which
indicates maximum possible distance between measurement and targets. Only the measurements inside the gate are
considered for assignment. Later, these statistical differences are used in data association.

2) Data association: MHE-MHT implements the same data association process as the Reids algorithm[18] which
has been explained above. The assignment matrix is generated to represent all possible target-to-measurement
associations. Then each new hypothesis contains a set of potential target-to-measurement assignments, leading to an
exhaustive approach of enumerating all the possible assignment combinations. To solve this problem, the Murty’s
algorithm [19] is used to find the k-best assignment/new hypotheses generated from each parent hypothesis. To
further reduce the computational cost, a merging algorithm is also implemented in to prevent hypotheses from being
considered if the ratio of their probability to the best hypothesis becomes too small.

3) Target Maintenance: For ground target tracking scenarios, vehicles may enter or leave the surveillance field of
view during the tracking process. Moreover, occlusion or miss detection is also possible when a vehicle is hidden
behind another one. In order to achieve a fully functional tracking algorithm, we implement target maintenance logic
in MHE-MHT structure. Basically, there are three possible status for a set of targets in this logic: target initiation,
confirmation/deletion and maintenance. The implementation is based on track-oriented approach. The targets
present at a time step are a combination of existing targets from the parent tracks and any new targets resulting from
the set of measurement associations. For any targets in existence at time k-1, the possible associations at time k:
e Target initiation: If the measurement is associated with a new target and the new target hypothesis
appears in the current k-best hypotheses. Add a target lifetime index to the target with value 1.
Target confirmation/deletion: The new target is confirmed only if the detected target appears along
the same track over a consecutive iterations of Ct times. The lifetime index is accumulated by 1whenever the
tentative target is detected and will become Ct (confirmation threshold) when confirmed. On the contrary, the
lifetime index for any existing target is reduced by 1 whenever the target is not associated with the current
measurement and will be permanently deleted from target list when the lifetime is 0.
e Target maintenance: The confirmed target may be temporally occluded or undetected by the sensor.
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For this situation, the track measurement for unassociated targets is updated according to the predicted position
of the target last associated states.

Current New

Measurements Data association
Hypotheses
A probability
Initialize Priori L Gate Check - Assighment Matrix > Generate k-best
Targets - Generator Hypotheses
A
A4
Hypotheses at time k
P Hypothesis Reduction
MHE Filter - (merging)
\/
\ Track Maintenance
\
Conformed Target estimated states
N-scan Pruning P Hypotheses/Tracks —————»

(at time k-N)

Figure 3. Flow diagram of MHE-MHT algorithm

4) MHE filter: The details about implementing MHE for constrained target tracking have been discussed in
previous section in this paper. In this part, the main work will focus on comparing the difference between MHE and
KF under the MHT structure. In the original MHT, the ‘Filter’ process is based on Kalman state estimation
including two individual steps: prediction update and measurement update. However, the two steps are combined in
MHE and solved directly by optimization solver. In MHE, the state estimation is determined online by solving a
finite horizon state estimation problem. To determine new estimate of the target state, the finite horizon of latest
measurements are resolved while the problem is solved recursively with only the current step measurement being

considered in KF. Assuming that at time k, x;, == x(k; z, {wj}j:;_N) denotes the solution of MHE optimization

function (10) for a linear, time-invariant discrete-time system with initial state z and process noise {w]-}j:Tl_N in
horizon length N. Then th