
Davis 1 

COMPARISON OF OBJECTIVE RATING TECHNIQUES VS. EXPERT OPINION IN THE 

VALIDATION OF HUMAN BODY SURROGATES 

 

Matthew L. Davis 

Wake Forest School of Medicine 

Virginia Tech-Wake Forest University Center for Injury Biomechanics 

United States  

 

Bharath Koya 

Wake Forest School of Medicine 

Virginia Tech-Wake Forest University Center for Injury Biomechanics 

United States  

 

Jeremy M. Schap 

Wake Forest School of Medicine 

Virginia Tech-Wake Forest University Center for Injury Biomechanics 

United States  

 

Fang-Chi Hsu 

Wake Forest School of Medicine 

Department of Biostatistical Sciences 

United States  

 

F. Scott Gayzik 

Wake Forest School of Medicine 

Virginia Tech-Wake Forest University Center for Injury Biomechanics 

United States  

 

Paper Number 17-0141 

 

ABSTRACT 

 

Objective evaluation (OE) methods provide quantitative insight into how well human body models (HBMs) 

predict a biomechanical response.  Two techniques for this purpose are CORA and the ISO/TS 18571 

standard.  These ostensibly objective techniques have differences in their algorithms that may lead to 

discrepancies when interpreting model performance.  The objectives of this study were 1) to apply both 

techniques to a biomechanical dataset from a HBM, and compare the scores and 2) conduct a survey of subject 

matter experts (SMEs) to determine which OE method compares more consistently with SME interpretation.  

The GHBMC average male HBM was used in five simulations of biomechanics experiments, producing 58 

time history curves.  Because both techniques produce phase, magnitude, and shape scores, 174 pairwise 

comparisons were made.  ISO had lower average scores for each component rating metric than CORA, 

indicating a stricter evaluation.  Correlations between CORA and ISO were strongest for phase (R
2
=0.66) and 

weakest for shape (R
2
=0.27).  Statistical analysis revealed significant differences between the two OE methods 

for each component rating metric.  SMEs (n=40) were then surveyed to provide  intuitive scoring of how well 

the computational traces matched the experiments.  SME interpretation was found to statistically agree with 

the ISO shape and phase metrics, but was significantly different than the ISO magnitude rating.  SME 

interpretation agreed with the CORA magnitude rating.  The finding of the study suggests a mixed approach to 

reporting objective ratings, using the magnitude method in CORA and the ISO shape and phase methods.  



 

Davis 2 

INTRODUCTION 

 

The use of computational modeling has become an 

important aspect of the development process in the 

automotive and defense industries.  Prior to 

production, products are often tested using a variety 

of computer programs to evaluate their performance.  

These simulations evaluate aspects of the design 

process ranging from structural crash-worthiness [1] 

to occupant protection and injury risk mitigation [2].  

A growing component of these types of analyses 

includes the use of computational human body 

surrogates.  These simulations can include a variety 

of models, such as rigid body models [3], 

anthropomorphic test devices (ATDs) [4], or full 

human body models (HBMs) [2,5].  Due to the 

reduced cost of running these simulations, as well as 

the large amount data that can extracted from them, 

these types of simulations offer a valuable 

supplement to physical testing.  However, in order 

for these models to yield meaningful data, they must 

be carefully validated.  How closely a model matches 

an experiment is a key piece of information for 

modelers.  For example, HBMs are commonly 

compared against mean response and corridor 

biomechanical data obtained from Post-Mortem 

Human Subject (PMHS) testing [6].  For the sake of 

validation, a quantitative comparison that leads to an 

unambiguous interpretation of the model 

performance, taking into account the biological 

variation of specimens, is paramount when 

characterizing the biofidelity of a model.  These 

objective comparisons offer a robust means of 

evaluating the performance of a model throughout the 

course of development. 

 

Objective Evaluation (OE) methods seek to replace 

the subjectivity inherent in the validation process 

with a numerical score that provides quantitative 

insight into how well a human surrogate predicts a 

biomechanical response.  While there are many 

techniques for this purpose [7-9], two commonly 

applied methods are Gehre et al.’s CORA software 

[10] and the ISO/TS 18571 standard [11].  The 

advantage of these techniques is that they evaluate 

individual components of the curve to provide a more 

complete comparison of time-history signals.  While 

both techniques evaluate similar aspects of the 

signals, there are several differences between the 

inherent algorithms of the methods that can lead to 

different interpretations of the results.  It is important 

to understand how these differences can be 

interpreted and the effect they can have on model 

validation.  While these techniques are broadly used 

[2,12,13], they have not been directly compared. 

 

As such, the objectives of this study are two-fold: 1) 

compare the results of CORA and ISO/TS 18571 OE 

techniques applied to a set of biomechanical data 

derived from a human body finite element model, and 

2) conduct a survey of subject matter experts (SMEs) 

to determine which of these OE methods, if either, 

compares more consistently with SME interpretation.  

The goal of this work is to evaluate how results from 

these techniques can influence the interpretation of 

model validity, and if these interpretations agree with 

real world expert interpretation. 

 

METHODS 

 

The Global Human Body Models Consortium 

(GHBMC) average male occupant (M50-O v4.4) 

finite element model was selected for use in this 

study.  The model was developed based on a multi-

modality medical image and external anthropometry 

dataset of a volunteer representing a 50
th

 percentile 

male in terms of height (174.9 cm) and weight (78.6 

± 0.77 kg).  The development and application of this 

dataset was described by Gayzik et al. [14].  Once 

developed, the model underwent validation 

simulations at both the regional [15-18] and full body 

levels [19-21].  More information on the 

development of the model can be found in the 

GHBMC M50-O user’s manual [22]. 

 

Simulations 

 

To obtain outputs representing a range of impact 

conditions and directions, the model was run through 

five simulations representing physical biomechanics 

experiments.  These simulations consisted of both 

localized, rigid hub impacts and full body sled cases.  

The rigid hub simulations included an oblique 

thoracoabdominal impact [23], a frontal abdominal 

impact [24], and a lateral pelvis impact [25].  The full 

body sled cases represented a lateral impact into 

fixed steel plates [26,27] and a frontal sled test 

configuration [28].  All simulations were run using 

LS-Dyna v6.1.1, rev. 78769 on a Linux Red Hat 6 

high performance computing system (the Distributed 

Environment for Academic Computing, or DEAC 

cluster) maintained at Wake Forest University. 

 

The thoracoabdominal impact employed a 23.4 kg 

cylindrical hub impactor with a 15 cm diameter and a 

nominal impact velocity of 6.7 m/s [23].  The impact 

location was 7.5 cm below the xipohoid process at 

60° from anterior.  Model data were compared to the 

mean experimental force vs. time signal in order to 

evaluate the OE techniques. 
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The abdominal impact consisted of a 2.5 cm 

diameter, 48 kg bar impacting at 6.0 m/s.  This was a 

free-back impact occurring at the level of the 

umbilicus (approximately L3) [24].  The force of the 

impact was measured as the contact force of the rigid 

bar.  Model data were compared to the mean 

experimental force vs. time curve. 

 

The pelvic impact simulated a square-faced impactor 

weighing 16 kg impacting with 800 J of energy. This 

required giving the impactor a 10 m/s velocity 

normal to the sagittal plane.  The pelvis impactor 

contacted the trochanter and iliac crest at 90°, 

according to the literature [25].  Similar to the other 

rigid impact simulations, the contact force of the 

impacting plate was used to obtain force data.  This 

contact force was compared to the mean experimental 

force vs. time curve to facilitate OE technique 

comparison. 

 

The lateral sled test was modeled as a 6.7 m/s impact 

using a Heidelberg-type sled [26,27].  The impact 

environment included a flat rigid wall as a backrest, a 

Teflon seat, and five rigid impacting plates located at 

the shoulder, thorax, abdomen, pelvis, and knee.  

Torso forces were obtained as the sum of the 

shoulder, thorax, and abdomen forces.  The pelvis 

force was measured as the contacting force at the 

pelvis plate.  For both the torso and pelvis outputs, 

the model responses were compared to the mean 

experimental force vs. time data. 

 

The frontal sled case was modeled as per Shaw et al. 

[28].  This simulation represented a frontal impact 

with on overall change in velocity of 40 kph.  The 

simplified buck used in the simulation was modeled 

as a rigid body.  Belt properties were developed to 

match experimental conditions (26 kN of force at 7% 

strain) and no pretensioners or load-limiters were 

included.  A foam knee bolster was also included to 

restrict motion of the lower extremities in the model.  

Prior to simulation, the model was gravity settled for 

100 ms to obtain realistic flesh contours within the 

buck.  With regards to outputs, both kinetic and 

kinematic responses were obtained for comparison to 

experimental values.  With the exception of chest 

deflection data, all kinematics were reported in the 

global coordinate system.  Reaction forces at the knee 

bolster and foot rests were also recorded in the global 

coordinate system and then transformed into a local 

coordinate system per the literature [29].  Resultant 

belt force data were obtained to represent the 

responses of the upper and lower shoulder belt and 

the outer lap belt.  All data extracted from the model 

were compared against the average of experimental 

PMHS tests [28]. 

Objective Evaluation 

 

While the model validity and accurate representation 

of the described biomechanical simulations is 

paramount, the goal of this study is to see how, when 

presented with identical comparison cases, the CORA 

and ISO techniques interpret model performance.  To 

facilitate this comparison, all model data were output 

in binary files from LS-Dyna and were recorded at a 

sampling rate of 10 kHz.  Post-processing of the data 

was performed in OASYS T-His (Ove Arup 

SYStems, Solihull, UK) and Matlab R2013 

(MathWorks, Natick, MA).  Force data were filtered 

using an SAE CFC 600 filter and kinematic data were 

not filtered. 

 

In order to effectively source discrepancies between 

the two OE techniques, it is important to understand 

how each component of the rating metric is 

calculated.  Detailed descriptions of the algorithms 

for each technique can be found in the literature 

[30,31].  However, as a foundation for comparison, 

each component of the CORA and ISO techniques is 

briefly described. 

 

CORA 

 

The CORA rating metric is a set of algorithms 

comprised of two independent sub-rating schemes: a 

corridor score and a cross-correlation score [10].  A 

complete description of this technique can be found 

in the literature [30].  The software was developed to 

calculate the level of correlation between two non-

ambiguous signals and return a total score ranging 

from 0 to 1, where a 1 would indicate good 

correlation and a 0 would be a poor match based on 

defined tolerances.  The default settings as 

recommended by the software provider were used in 

this analysis, with the exception of the phase interval, 

which is described below. 

 

The corridor rating is designed to evaluate the 

deviation between the signals using a set of fixed-

width or user-defined (i.e. experimentally reported) 

inner and outer corridors.  If the model curve is 

within the inner corridor, the resulting score is a 1.  If 

the model curve falls between the inner and outer 

corridor, the result is between 0 and 1 based on an 

interpolation score.  If the signal is outside of the 

outer corridor, the result is a 0.  While this technique 

gives a valuable global picture of model 

performance, a disadvantage of this approach is that 

phase differences between the model signal and the 

experimental data can lead to poor scores. 
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The cross correlation method analyzes three aspects 

of the signal in order to reduce the relative 

disadvantages of using only the corridor score: phase, 

shape, and magnitude.  First, the algorithm attempts 

to eliminate differences in phasing by shifting the 

model curve by multiples of Δt.  Then, for each 

shifted state, the program calculates a cross-

correlation value.  The maximum cross-correlation 

over a user defined range of allowable time shift is 

then used as a basis for determining the three 

components of the cross-correlation rating.  For 

calculating the phase rating, if the model signal was 

shifted less than a user defined minimum, the rating 

receives a score of 1.  If the curve is shifted more 

than a specified maximum, the score is zero.  For 

phase shifts between the specified minimum and 

maximum, the score is determined based on a 

regression relationship.  Following the time shift, the 

magnitude rating is computed by comparing the 

square of the areas between the curves and the time 

axis.  The final magnitude rating is then determined 

as a ratio between the two areas raised to a user 

defined exponent.  Lastly, the shape rating of the 

signal is calculated using the maximum cross-

correlation value. 

 

ISO Metric 

 

Similar to CORA, the goal of the ISO metric was to 

combine a number of different rating metrics to 

robustly evaluate the correlation between two signals.  

Initially, the ISO established technical committee 

evaluated the CORA corridor technique and the Error 

Assessment of Response Time Histories (EARTH) 

[32] techniques to combine a corridor and cross 

correlation rating.  Ultimately, the committee 

established an overall metric based on the CORA 

corridor algorithm, and an updated version of the 

EARTH score referred to as the Enhanced EARTH 

metric (EEARTH) [31]. 

 

Similar to the CORA cross-correlation metric, the 

total EEARTH rating is built on the individual phase, 

magnitude, and shape components.  However, while 

the general components of the EEARTH metric are 

similar to CORA, there are unique features within the 

algorithms that differentiate the two.  The phase 

metric of the EEARTH rating is used to assess phase 

lag between the model and test curves.  Using a pre-

defined maximum allowable percentage time-shift, 

the model curve is iteratively shifted left with 

discrete time step intervals and the cross-correlation 

between the truncated curves is calculated.  Next, the 

test curve is shifted left over discrete time step 

intervals and the same calculation is performed.  If 

the time shift is greater than or equal to the maximum 

allowable time shift, the score is 0.  If the maximum 

cross-correlation value occurs with no time shift, the 

score is 1.  For time shifts in between these values, 

the rating is calculated using a regression method 

[11,31].  The time shifted and truncated curves are 

then used to calculate the magnitude score. 

 

Similar to CORA, the EEARTH magnitude rating 

measures differences in amplitude between the two 

curves.  However, the EEARTH magnitude rating 

applies a dynamic time warping (DTW) algorithm 

prior to measuring discrepancies between the signals.  

The function of DTW is to expand and compress the 

time axis to align key components of the curve (such 

as local maxima and minima).  This is all based on 

minimizing a local cost function [31].  Once the 

curves have been shifted, truncated, and warped, the 

magnitude error is calculated as a ratio of the 

difference in amplitude between the two signals 

based on a vector norm calculation.  If the difference 

between the signals is less than the pre-defined 

threshold, the magnitude rating is 1.  If the amplitude 

difference is greater than the maximum allowable 

magnitude error threshold, the score is 0.  For values 

in between, the score is calculated using a regression 

function. 

 

Lastly, the shape rating is calculated based on the test 

curve and the shifted, truncated model curve with no 

DTW applied.  The two curves are divided into time 

intervals and the average slope is calculated at each 

interval.  The shape score is then determined by 

calculating the ratio of the difference in slope 

between the model and test curves to the test curve.  

If there is no difference between the model and test 

curve, the shape score is 1.  If the difference exceeds 

a pre-define threshold, the score is 0.  Values in 

between are calculated based on a regression 

function. 

 

Application of OE Methods 

 

The kinetic and kinematic time-history traces 

obtained from the models were run through CORA 

v3.5 and ISO.  When applying CORA, suggested 

default values were used for all parameter controls 

except for the phase range.  For evaluating the phase 

shift, the allowable time shift range was changed 

from 3 to 12 percent to a range of 5 to 15 percent.  

For the application of ISO, all recommended weights 

and parameters set forth by the standard were 

applied.  A total of 58 time history traces were 

obtained from the simulations.  This provided a 

diverse sample of signals allowing for a robust 

comparison of the techniques.  Because both 

techniques produce a phase, magnitude, and shape 
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score, 174 (58 x 3) pair-wise comparisons were 

made.  The corridor score of each technique was not 

included in the pair-wise analysis because the 

underlying algorithm is the same for both CORA and 

ISO.  For each component of the cross-correlation 

rating metric, the comparative scores were cross-

plotted and used to evaluate correlations.  In this 

analysis, the coefficient of determination, R
2
, was 

used to highlight differences in the two techniques.  

Statistical tests for significant differences between 

the two were also determined using a Wilcoxon 

matched-pairs signed rank test and a significance 

value of α = 0.05. 

 

Survey of Subject Matter Experts 

 

The survey component of this study was approved by 

the Wake Forest School of Medicine's Institutional 

Review Board (IRB #39944).  To evaluate how the 

OE techniques compare to real world interpretation, a 

survey was distributed to subject matter experts 

(SMEs) to obtain a scoring of how well the 

computational traces match the experiments in terms 

of phase, magnitude and shape.  The objective was to 

compare the SME based scores to the quantitative 

results obtained from CORA and ISO to determine 

which, if either, is more in line with SME 

assessment.  Participants were asked to complete a 

one-time, electronic survey designed to provide their 

interpretation of how well a subsample of 15 time 

history traces from the full dataset compared to 

experimental traces.  Participation was limited to 

individuals with training or expertise in 

computational modeling and model validation 

techniques.  Participants were contacted for inclusion 

in the study via email and all responses were 

anonymized prior to analysis.  Demographic 

information including work title, affiliation, years of 

experience in biomechanics, and years of experience 

in model validation/signal analysis were requested.  

In order to answer the research question, the survey 

was sent to 69 SMEs with an expected participation 

of 50%.  The sample size for the survey was 

determined by calculating the minimum number of 

survey questions and participants needed to detect a 

Cronbach’s alpha of 0.9 assuming type 1 error of 

0.05, a two-sided test, and a 80% power.  Prior to 

evaluating the curves, participants were introduced to 

the terminology used in the study to ensure a 

reasonable baseline.  However, no coaching was 

conducted in order to ensure that participants were 

not led to focus on specific curve attributes for 

evaluation.  Each participant was asked to rank the 

phase, magnitude, and shape for the subsample of 15 

curves, presented in a randomized order, on a scale of 

0-100 that could be directly mapped to the scale 

implemented in CORA and ISO.  The results were 

then analyzed using a 1-sample t-test that tested 

whether the mean from the sample was the same as 

CORA or ISO independently for phase, shape, or 

magnitude. 

 

RESULTS 

 

All simulations normally terminated without 

numerical error. In each case, simulations were 

visually inspected for localized areas of instability 

and were found to be stable.  To illustrate the impacts 

evaluated in this study, a time lapse of each 

simulation can be seen in Figure 1. 

 

The time history signals for each impact condition 

were exported and compared to the experimental data 

using both CORA and ISO.  Because of the variety of 

data obtained from these simulations, the OE 

methods were evaluated using signals that ranged 

from good to poor correlation.   

 

The overall average scores for the two algorithms, 

including the corridor metrics, were 0.60 and 0.56 for 

CORA and ISO respectively.  No signal-based 

weighting approach was used for off-axis signals 

which may produce low correlation scores, but are 

also low magnitude compared to the resultant (e.g. 

shear vs. normal loading).  Overall scores typically 

emphasize the dominant signals [33,34].  For both 

techniques, the corridor and cross-correlation scores 

were computed with the recommended weight factors 

(see Equations (1) and (2) where Zcorr stands for 

corridor score and ZCrossCor stands for cross-

correlation score).  With regards to magnitude, 

CORA rated the curves with an average score of 0.49 

± 0.27, whereas ISO rated the signals lower in 

general with an average rating of 0.38 ± 0.36.  For 

phase, the average CORA score was 0.72 ± 0.38 and 

the average ISO score was 0.69 ± 0.30.  Lastly, shape 

scores were rated as 0.71 ± 0.34 in CORA and 0.61 ± 

0.16 in ISO.  Overall, each of the components of the 

ISO cross-correlation score were lower on average 

compared to CORA, indicating a stricter rating of the 

signals. 

 
𝐶𝑂𝑅𝐴 𝑆𝑐𝑜𝑟𝑒 = 0.5 ∗ 𝑍𝐶𝑜𝑟𝑟 + 0.5 ∗ 𝑍𝐶𝑟𝑜𝑠𝑠𝐶𝑜𝑟  (1) 

𝐼𝑆𝑂 𝑆𝑐𝑜𝑟𝑒 = 0.4 ∗ 𝑍𝐶𝑜𝑟𝑟 + 0.6 ∗ 𝑍𝐶𝑟𝑜𝑠𝑠𝐶𝑜𝑟 (2) 

 

Cross-plots for each component metric of CORA and 

ISO can be seen in Figure 2.  In these plots, the 

respective magnitude, phase, and shape scores were 

aggregated from each simulation and compared using 

linear regression.  As such, each point on the plot 

represents the CORA and ISO scores for a single 

time history trace.  The phase scores for each metric 
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Impact 

Type 
T = 0 ms T = 1/3 T = 2/3 T = Tfinal 

Thoraco-

Abdominal 

Impact 

    

Frontal 

Abdomen 

Impact 

    

Lateral 

Pelvis 

Impact 

    

Lateral Sled 

    

Frontal Sled 

Test 

    

Figure 1. Simulation time-lapse of the M50 for each impact condition 

 

 

were found to have the strongest correlation with an 

R
2
 value of 0.66.  Shape scores were found to have 

the weakest correlation with an R
2 

value of 0.27.  

With regards to statistical comparison, the differences 

between CORA and ISO were found to be 

statistically significant for each component rating 

metric with p values of 0.003, 0.002, and 0.016 for 

phase, magnitude, and shape respectively. 

 

 

 

 

Survey Responses 

 

In total, 40 responses were collected from the survey 

solicitation.  Participants were primarily from 

academia (72%), followed by industry (15%) and 

government (13%).  More than 33% of participants 

had 10+ years of biomechanics and signal analysis 

experience, with more than 60% having 5+ years of 

experience. 
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Figure 2. Correlation analysis of each 

component rating metric 

 

The average response for the phase, magnitude, and 

shape characteristics for each of the 15 curves can be 

seen in Figure 3.  In Figure 3, the bars represent the 

average of all survey responses for a particular curve 

and rating metric.  Overall, volunteers rated the 

magnitude scores lowest with an average score of 

0.52 across all 15 curves.  The magnitude rating also 

had the largest variation in responses with respect to 

the average with a coefficient of variation of 0.38, 

indicating the widest variation in SME assessment.  

The phase rating was given the highest scores with an 

average of 0.70.  The phase rating also had the lowest 

average of coefficient of variation (cv = 0.28), 

indicating the greatest agreement in SME assessment. 

 

 

 

 

Figure 3. Survey responses for each curve 

 

When comparing the SME responses to the ISO 

standard, the null hypothesis that the SME responses 

and ISO results were the same was rejected for 

magnitude (p<0.001), but was not rejected for the 

shape and phase metrics (p-values of 0.79 and 0.10 

respectively).  With regards to CORA, the null 

hypothesis was rejected for the shape and phase 
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metrics (p-values of 0.005 and <0.001 respectively), 

but was not rejected for the magnitude rating (p = 

0.79).  From a real world perspective, this indicates 

that SME responses agreed with the ISO 

interpretation for phase and shape, but did not agree 

with the ISO magnitude rating.  Conversely, the SME 

responses agreed with the CORA interpretation for 

magnitude, but not the phase and shape ratings. 

 

For further evaluation, the percent difference in peak 

value between the model and experimental curves 

was compared to the average volunteer magnitude 

rating for each of the 15 curves in the survey.  The 

percent difference in peaks was moderately correlated 

to the magnitude ratings with a Spearman’s rho of -

0.58.  The average magnitude ratings were also 

compared to the percent difference in area under the 

curve for each of the curves evaluated in the survey.  

In this case, area under the curve showed strong 

correlation to the magnitude ratings with a 

Spearman’s rho of -0.79. 

 
DISCUSSION 
 

As objective evaluation techniques are increasingly 

applied to the validation of computational human 

surrogate models, it is important to investigate how 

variations in different rating metrics can affect the 

overall estimation of model validity.  The goal of this 

study was to apply both the CORA and ISO objective 

rating metrics to the same set of data derived from 

simulations of the GHBMC M50-O finite element 

model.  While we strive for objective evaluations, we 

also note that the totality of how an engineer may 

view a signal is beyond what can be encapsulated in 

three nominally orthogonal measures (magnitude, 

phase and shape).  Thus in this work we sought to 

find which algorithms are more likely to be in 

agreement with evaluations made by experts in the 

field.  As such, the CORA and ISO interpretations 

were also compared to real world interpretations from 

SMEs. 

 

The cross-plots depicted in Figure 2 show general 

trends for each component metric.  For example, 

phase scores for both ISO and CORA had higher 

scores on average compared to the magnitude and 

shape ratings.  However, more interesting are cases 

where one technique assigns a score of nearly 1 to a 

curve, and the other technique assigns the same curve 

a score closer to 0.  Using these techniques as they 

were intended, this means the user is to interpret that 

one technique says the signal is a good match to the 

experimental data, but the other technique says the 

model does not represent the real world test. 

 

This indicates that both techniques have limitations, 

and therefore must be combined with engineering 

judgment prior to drawing a final conclusion 

regarding a model’s validity.  However, as the survey 

responses showed, overall interpretation of the shape 

and phase response from SMEs tended to agree with 

the outputs from the ISO technique.  For magnitude, 

the CORA method tended to more closely agree with 

the SMEs.  This indicates that using the area of the 

signal may be a more intuitive means of assessing 

magnitude ratings.  This finding also agrees with the 

strong correlation between the SME magnitude 

ratings and the percent difference in area for the 

curves in the survey.  However, as the CORA 

magnitude rating uses a squared area ratio to assign a 

score, differences in polarity between the 

experimental and model curves can lead to artificially 

high scores.  Therefore, when comparing signals with 

flipped polarity, this limitation in the CORA 

magnitude rating should be addressed in the future by 

including a polarity correction factor. 

 

Overall, the CORA magnitude rating and ISO phase 

and shape ratings were found to provide the most 

intuitive scores when comparing model and 

experimental curves (Table 1).  However, both 

techniques tend to give higher scores on average to 

the phase rating compared to the other component 

rating metrics.  This can lead to biased total scores 

when phase is equally weighted with magnitude and 

shape.  A similar trend was seen in SME 

interpretations, with an average phase score that was 

30% and 17% higher than the subsampled magnitude 

and shape scores respectively.  Therefore, in some 

applications, it may be necessary for the user to 

increase the exponent governing phase scores 

between 0 and 1 to make the regression equation 

either quadratic or cubic.  Also, either isolated or in 

combination, the interval over which phase shift is 

permitted could be reduced to more strictly govern 

the phase rating.  In general, this would more strictly 

govern the overall rating and enable researchers to 

discern potentially required model updates, such as 

viscoelastic adjustments. 

 

Table 1.  

Summary of agreement for OE techniques and 

SME interpretation 

Component 

Rating 

Metric 

OE Technique 

in Agreement 

with SMEs 

p-value 

Magnitude CORA 0.79 

Phase ISO 0.1 

Shape ISO 0.79 
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When reporting final quantitative evaluations for 

validation, researchers commonly report the average 

of each component rating metric to give a global 

view of the model response.  However, it may be 

necessary to discriminate between signals of varying 

magnitude to give a clearer picture of model 

behavior.  For example, orthogonal signals 

(responses on the x, y, and z axes) often have motion 

on a primary axis (ex. X-axis) or primary plane of 

motion (ex. X-Y plane).  In these cases, there are one 

or two off-axis responses that do not have the same 

scale as the primary motion.  Therefore, in certain 

applications it may be appropriate to apply a 

weighting calculation to apply more weight to the 

scores of plots with greater magnitude.  Davis et al. 

proposed an approach to weight objective evaluations 

based on a weighting factor derived from the peak 

values of the experimental mean traces [34]. 

 

CONCLUSIONS 

 

Determining how closely a model matches an 

experiment is paramount for modelers.  The goal of 

the OE methods evaluated in this work is to replace 

the subjectivity inherent in this process with a 

numerical score, yet it is clear from the results that 

ostensibly objective methods can produce different 

interpretations for the same data.  This study provides 

a framework to critically compare results from each 

method, and highlights the relative strengths and 

weaknesses of each.  In addition, a survey of SMEs 

allowed for the OE outputs to be compared to real 

world interpretation of model performance. 

 

On average, ISO produced lower ratings than CORA, 

indicating a stricter evaluation of the model 

performance.  The comparison also indicated 

statistically significant differences between the two 

techniques for each component rating metric, both in 

terms of the direct comparison between ISO and 

CORA and the comparison to SME interpretation.   

 

Ultimately, the findings of the study suggest that 

using a mixed approach to reporting objective 

ratings, using the magnitude method in CORA and 

the ISO shape and phase methods, may be the most 

intuitive method to analyze model performance.  

However, it is noted that there are limitations for 

considering a model validated based solely on the 

outputs of OE techniques.  While the OE methods 

evaluated in this study provide valuable insight 

with regards to model response, all OE analysis 

should be performed in conjunction with 

engineering judgment and other practical 

considerations.  These include the ability to match 

signal peaks, which are often used by 

biomechanists as a correlate for the overall 

response or injury risk, and what experimental data 

is available to calculate the factors used in the 

techniques. 
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