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MOTIVATION 

The increasing performance of electronic control 
units, sensor and actuator components allows the 
development of advanced driver assistance and 
piloted driving systems supporting or performing the 
driving task on various automation levels. Adaptive 
cruise control (ACC) systems for instance overtake 
the longitudinal vehicle movement in comfort driving 
situations whereas automatic emergency braking 
(AEB) functions temporarily intervene in impending 
accident scenarios. Both systems assist in defined 
driving modes, require manual environment 
monitoring and can always be oversteered by the 
driver. Piloted driving functions gradually increase 
the system level of automation by executing 
longitudinal as well as lateral vehicle movement, 
additionally monitoring the vehicle environment and 
addressing more and more driving situations. Along 
with the growing automation levels the implemented 
driving functions have to fulfill more and more 
complexity and performance requirements 
concerning their behavior in various scenarios and 
situations (see [1] and Figure 1). 
 

 
Figure 1.  Increasing requirements for assisted and 
automated driving functions 
 
The requirement growth is supported by legislation, 
insurance and consumer protection organizations as 
well as the car manufacturers themselves 
continuously defining new targets for maximizing the 
effecivity of assistance or piloted functions in a given 
environment. The approach is often to abstract the 
respective traffic and accident occurrence to a finite 
number of representative sampling points addressing 
the relevant events to a maximum extent. In case of 
current AEB systems the number and difficulty of 
functional requirements is already approaching a 
level where automated system application becomes 
essential. In order to address the whole relevant 
traffic scenario spectrum future automated driving 
systems in principal need to handle an infinite 
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number of potentially critical situations with 
maximum effect on collision avoidance or severity 
reduction. That is why both manual system 
application as well as real car tests have to be 
substantially supported by automated simulation and 
optimization methods for a sufficient coverage of 
relevant scenarios. 
 

OBJECTIVE 

This paper presents a simulation-based method 
automizing the application, performance evaluation 
and testing of predictive safety functions using the 
example of current AEB systems. The approach 
addresses the growing scenario complexity and the 
increasing performance requirements with several 
intended uses along the function development 
process (see Figure 2). 
 

 
Figure 2.  Simulation support along the functional 
development process (V-Model, e.g. see [2]) 
 
The presented approach is supposed to: 
• support the validation of function concepts (1) 

and system definition (2) in the early 
development phase 
o early predict function performance in 

consumer ratings and real world scenarios 
o evaluate the effect of system parameter 

variations (e.g. sensor and actuator 
characteristics) 

• balance safety performance and customer 
acceptance during system (3) and function 
application (4) 
o provide a base parameter set for refinement in 

real system and vehicle tests 
o quickly evaluate the effect of changes in 

parameter sets 
• enlarge test coverage by means of virtual 

endurance tests (5) 
The approach overall aims at reducing specification, 
application and test costs by continuous simulation 
along the whole development process. 
 

 

METHODICAL APPROACH 

During the definition and application phase of a 
predictive AEB function the major goal is to create 
effective automatic braking interventions with 
maximum coverage of relevant load cases and 
maximum respective velocity reduction which is only 
activated legitimately and does not disturb the driver 
executing the driving task. This problem represents a 
goal conflict towards the AEB function ܨ with its 
global parameters ௚ܲ௟௢௕ adressing a number of load 
cases ܥܮ with weighting ܹ(ܥܮ). Its solution requires 
an optimization process for finding the best 
parameter set ௢ܲ௣௧  in terms of a defined deployment 
cost function ܥ characterizing the functional effect 
and acceptance (see Figure 3). 
 

 
Figure 3.  Fully automated parameter optimization 
process 
 
In order to assure the best optimization results for 
a large amount of parameters under given time 
restrictions the global parameter set ௚ܲ௟௢௕  can 
optionally be reduced to the functionally most 
relevant base parameter set ௕ܲ௔௦௘  by means of a 
sensitivity analysis checking the individual 
parameter effects on the deployment costs ܥ for 
the weighted load cases ܥܮ. 
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Based on the general optimization process a 
concrete toolchain fulfilling the following 
requirements was developed: 
• Simulation in multiple real time to conduct many 

simulations in short time 
• Ability to perform global optimization / multi-

objective optimization 
• Easy modular expandability 
• Closed-loop simulation ability 
• Open interface 
• Integrability of series ECU algorithms 
 
Description of the general toolchain 
The method is software-in-the-loop (SIL) based. 
Figure 4 shows the used toolchain for optimizing the 
AEB function parameters. The core consists of three 
tools:  
(1) rateEFFECT is a tool developed and used by 
Volkswagen Group to evaluate the effectivity of 
active safety systems [4]. In this approach it is used 
as the underlying simulation environment. The 
vehicle dynamics and the scenery is based on PC-
Crash where rateEFFECT interacts in every 
integration step of PC-Crash. All kinds of load cases 
like load cases from consumer ratings, load cases 
from real world accidents like GIDAS (German In-
Depth Accident Study) or no collision load cases can 
be simulated. Via a system editor it is possible to 
define own active systems with predefined or self-
developed function blocks. The system configuration 
generally consists of sensors, algorithms, driver 
models and actuators. The described system in this 
paper uses idealized ego- and object sensors, the 
wrapped series ECU algorithm and the brake 
actuator. System delays are modelled between the 
sensor and algorithm as well as between the 
algorithm and actuator. A driver model is currently 
not used for the optimization of the AEB function. 
Besides the use of idealized sensors it is clearly 
possible to incorporate detailed sensor models into 
the overall system. The same applies to the driver 
model. The behavior of the AEB function is defined 
by its parameters.  

 
Figure 4.  Overview of the used toolchain 

(2) MATLAB serves as controller of the toolchain 
where the main GUI for pre- and post-processing 
runs. Several characteristic values (e.g. impact 
velocity, begin of specific action, etc.) can be 
visualized, the achieved points in consumer ratings 
are calculated automatically and single load cases can 
be studied in detail by visualizing signal sequences. 
The cost functions are defined here and the 
parameters, which shall be used in the optimization 
process, are chosen. To preselect appropriate 
parameters, sensitivity analysis can be performed to 
omit non-influential parameters for the actual 
optimization. 
(3) The results after each rateEFFECT simulation are 
collected and passed to Optimus [3] where the actual 
parameter variation process takes place. After the 
parameter variation step MATLAB takes the results 
from Optimus, hands the new parameter set to 
rateEFFECT and a new iteration begins. Optimus 
from NOESIS is a process integration and design 
optimization software platform and is used due to its 
easy integration in the toolchain and above all its 
hybrid optimization techniques. Especially in the 
beginning, the analyzing features of Optimus helped 
a lot to find the best optimization algorithms. With 
enough knowledge about the simulated system, its 
behavior and the most suitable optimization 
algorithms the MATLAB optimization toolbox could 
be used as well. 
 
Specific example 
The following paragraphs show the approach for the 
specific simulation-based optimization of an AEB 
system. The shown work in this paper restricts itself 
to optimize the parameter set, which triggers the AEB 
and the previous brake jolt (see Figure 5, red 
outlined). The optimization of suppression and 
abortion criteria is out of scope. 
 

 
Figure 5.  Possible action cascade of an AEB 
function 
 
Optimization methods and strategies 
Several optimization methods were analyzed for the 
simulation-based parameter optimization of the AEB 
system described above:  
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• Direct optimization [5]: The direct optimization 
applies the optimization algorithm directly on the 
simulation model. However, the computational 
costs might prohibit this approach, especially for 
global optimization, as they are caused by many 
evaluations of the simulation model 

• Metamodel-based optimization [5]: In the 
metamodel-based optimization the optimizer 
works on a metamodel instead of the simulation 
model. Therefore, the metamodel-based 
optimization makes use of the benefits of a 
metamodel. The key benefit is the low 
computational costs of a metamodel. 
Additionally, smoothness of metamodels 
simplifies the use of gradient-based optimization 
algorithms. However, the metamodel introduces 
an additional source of error as the metamodel 
cannot fully reproduce the behavior of the actual 
simulation model. Various interpolating and 
extrapolating methods can be used as metamodel 
(e.g. Kriging [9], radial basis functions (RBF) [6], 
quadratic least squares [9], neuronal networks [9], 
etc.) 

• Hybrid optimization [6]: The quality of a 
metamodel also depends on the number of 
samples. However, to sample the whole design 
space in a fine granular manner is 
computationally costly - especially since samples 
are wasted on regions, which are far off the 
optimum and not of interest. Hybrid optimization 
methods sample the design space in an adaptive 
manner. After an initial sampling and an initial 
metamodel, new samples are systematically added 
to support the metamodel in interesting areas – 
areas with a high probability to find the optimum. 

 
Besides the optimization method, a key point is the 
selection of the load cases. Figure 6 theoretically 
shows the classification of load cases in “collision” 
and “no collision”. It is important to preselect only 
the load cases, where the critical object is in the 
sensor field of view and the AEB function is possible 
to interact or where the AEB must not brake. An 
AEB function shall brake in critical situations (1), but 
must not brake in uncritical situations (2). Apart from 
that there are also some situations where the AEB 
may brake (3). Load cases from the “may brake” area 
should not be selected since it is not possible to 
formulate a single goal for this kind of load cases. 
The operational effect of the AEB has boundaries and 
the AEB works only within these boundaries (e.g. the 
ego velocity).  
 

 
Figure 6.  Classification of load cases 
 
Again, the main objective is the optimization of the 
AEB function for safety performance and robustness 
concerning false braking (false positives) which is 
crucial for customer acceptance.  
Therefore, two different approaches are possible: 
1. Simulating only collision load cases in the 

optimziation 
a. Restrict the AEB function to a certain 

maximum amount of velocity reduction  
b. Limit the time of first braking via a specific 

cost function 
c. Check the behavior of the AEB function after 

the optimization with some no collision load 
cases 

2. Simulating both collision an no collision load 
cases in the optimization process 

a. No restriction of velocity reduction necessary 
b. No limitation of first time of braking 

necessary 
 
The decisive factor for both approaches is the right 
load case selection. On the one hand, the selection 
should cover the whole operational effect of the AEB 
(and if approach 2 is used, the “AEB must not brake” 
area as well), on the other hand, too many load cases 
slow the optimization process down and could 
prevent finding a reasonable solution. Therefore, 
another important issue is the weighting of the load 
cases. If the weighting is conducted according to their 
occurrence in real life one could take this occurrence 
from in house accident data or accident studies like 
[7] and [8].  
 
The whole load case selection process could look like 
described below: 
a) Filter relevant load cases (see Figure 6) from load 

case database (e.g. consumer rating load cases, 
real world load cases, car manufacturer load 
cases) 

b) Determine the most important load cases from a) 
and group them into scenarios if necessary 

c) Weight the load cases according to e.g. 
occurrence, objects involved, customer 
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importance, etc. Either the number of load cases 
per scenario matches the calculated occurrence or 
each load case is weighted separately. 

 
Cost functions 
The AEB system is supposed to prevent collisions 
and at the same time must not brake in uncritical 
situations. Cost functions are needed to define the 
desired behavior of the AEB system. A cost function 
outputs costs, which measure the function 
performance with respect to the desired behavior. 
Therefore, the cost function ܥ (Equation 1) processes 
the simulation output ࡲ(ܲ). The costs are 
normalized. Zero costs represent the optimum and the 
worst case corresponds to costs of 1. 
ݐݏ݋ܿ  ∶ 	ℝ௡ → ℝ; 			࢟ ⟼ 	,((ࡼ)ࡲ)ܥ 	ݐݏ݋ܿ ∈ [0, 1] (Eq. 1) 
 
As stated above the goal is to balance safety 
performance and customer acceptance. Below we are 
presenting two simple ideas to measure these two 
goals. 
Safety Performance: The safety performance is 
measured as the reduction of the impact speed 
(Equation 2).  
௦௣ݐݏ݋ܿ  =  ௕௥௔௞௘ௌ௧௔௥௧ா௚௢൯ (Eq. 2)ݐா௚௢൫ݒ(௖௢௟௟ݐ)௥௘௟ݒ

 ௕௥௔௞௘ௌ௧௔௥௧ா௚௢ denotes the time of initiating theݐ 
braking and ݐ௖௢௟௟  denotes the time of the collision. If 
there is no collision, the costs are obviously zero. ݒ௥௘௟  
states the relative velocity in direction of the ego 
vehicle (Equation 3) 
(ݐ)௥௘௟ݒ  = (ݐ)ா௚௢ݒ − cos൫߶(ݐ)൯ ∗  (Eq. 3) (ݐ)௢௕௝ݒ
 
which is computed using the velocity of the ego 
vehicle ݒா௚௢, the velocity of the target object ݒை௕௝  
and the angle ߶ between the velocity vectors of the 
ego vehicle and the target object (see Figure 7). 
 

 
Figure 7.  Relative velocity in the direction of 
velocity vector of the ego vehicle 
 
The relative velocity could be negative yielding 
negative costs, which contradicts the normalization. 
A negative relative velocity occurs if the target object 
“escapes” from the ego vehicle or approaches the ego 
vehicle from behind. Hence, a collision caused by the 

ego vehicle is impossible. Non-negativity is assured 
by taking the maximum value of the relative velocity 
and zero. Assuming that the driver of the target 
object is a wrong way driver, the relative velocity is 
larger than the velocity of the ego vehicle giving 
costs greater than 1. However, the ego vehicle can 
reduce its own speed to standstill at best. To account 
for this, the minimum of the relative velocity and the 
ego speed is taken. Incorporating these two 
considerations gives the final cost function (Equation 
4) for the safety performance: 
௦௣ݐݏ݋ܿ  = min(max(ݒ௥௘௟(ݐ௖௢௟௟), 0) , ௕௥௔௞௘ௌ௧௔௥௧ா௚௢൯ݐா௚௢൫ݒ((௖௢௟௟ݐ)ா௚௢ݒ  (Eq. 4) 

 
Customer acceptance: The customer acceptance in 
Equation 5 is composed of two sub-cost functions 
“brake profile”(ܿݐݏ݋௔) and “distance” (ܿݐݏ݋ௗ) . 
௖௔ݐݏ݋ܿ  = ௔ݓ ∗ ௔ݐݏ݋ܿ + ௗݓ ∗  ௗ (Eq. 5)ݐݏ݋ܿ
 ௗ denote the weights of the sub-costݓ ௔ andݓ 
functions. Since the customer acceptance shall be 
normalized, it must hold that ݓ௔ + ௗݓ = 1 and that 
all sub-cost functions are normalized.  
The sub-cost function brake profile (Equation 6)  
 cost௔ = ܿ ∗ (௜ݐ)෍−ܽா௚௢ݐ݀ ∗ ,௜ݐ)ݓ ௨௔)௡ݐ

௜ୀଵ  (Eq. 6) 

 
evaluates the time when the AEB is initiated and the 
strength of the deceleration with the time step ݀ݐ, the 
acceleration of the ego vehicle ܽா௚௢ and a weighting 
function ݓ, which takes as arguments the current 
time step ݐ௜ and the instant of time of 
unavoidableness ݐ௨௔. The time of unavoidableness is 
defined as the time instance of the last braking and/or 
steering maneuver to avoid an impending collision. 
The coefficient ܿ is used to normalize the sub-cost 
function with the ego velocity at the first time of 
braking. The weighting function rates the start of 
deceleration as a function 
of time and can be modelled as a sigmoidal 
membership function (see Figure 8). This function is 
zero for start of braking after ݐ௨௔. Any braking after 
this point of time does not produce any costs. Going 
backwards in time, the function increases smoothly to 
1 and prior to that a braking action would be fully 
rated. Apart from the shown behavior, the weighting 
function could be also dependent on the ego velocity 
and other characteristics. 
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Figure 8.  Weighting function depending on time of 
braking 
 
The sub-cost function distance evaluates the 
minimum distance between the ego vehicle and the 
most critical object (see Figure 9). It is unwanted to 
stop too far away from the critical object, but at the 
same time not too close either. If the minimum 
distance equals a certain value defined as the 
optimum distance (݀݅ݐݏ௢௣௧), the costs are zero. 
Depending on whether the AEB is open-loop or 
closed-loop controlled, this function is useful or not.  
 

 
Figure 9.  Weighting function depending on time of 
braking 
 

RESULTS 

This chapter shows an analysis of the presented 
optimization methods, exemplary results from the 
optimization and the validation of some simulation 
results with vehicle tests.  
Analysis of presented optimization methods 
In the chapter “Methodical approach” three different 
optimization methods were presented: direct, 
metamodel-based and hybrid optimization. These 
methods were investigated and compared in terms of 
their performance. 
The optimization setup looks as follows. All Euro 
NCAP 2016 Car-to-Car and Car-to-Pedestrian 
situations represent the load cases, which give in total 
74 load cases. The Euro NCAP load cases are taken 
because they are well known by a broad audience. 
Note that only load cases with collisions were used in 
the optimization. The optimization addresses in total 

18 parameters which are responsible for triggering 
the AEB in a specific velocity area.  
Metamodel-based optimization: In a first step, the 
parameters are sampled 700 times with a Latin 
hypercube sampling [9]. The cost functions safety 
performance and customer acceptance are applied on 
the samples. A Kriging, radial basis function (RBF), 
quadratic least squares and neuronal network 
metamodel are built for each cost function. 
Except for the Kriging metamodel, all other 
metamodels yield negative costs for the safety 
performance and customer acceptance after an 
optimization with the ClearVu global multi-objective 
optimizer [10] (see Figure 10 as an example). 
 

 
Figure 10.  Negative costs for metamodel-based 
optimization on neural network metamodel 
 
The optimization based on the Kriging metamodel 
gives plausible results (see Figure 11). The red circle 
shows the optimal parameter set where the customer 
acceptance and safety performance are weighted 
each with a weight of 0.5.  
 

 
Figure 11.  Metamodel-based optimization on 
Kriging metamodel 
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Table 1 shows a validation of this specific parameter 
set with the simulation model. The value of the 
metamodel is compared to the value from the actual 
simulation conducted with rateEFFECT. Especially 
the costs of customer acceptance differ from the 
metamodel to the actual simulation model with 0.049 
which corresponds to an error of about 5 percent. 
 

Table 1. 
 

Metamodel Validation on 
simulation model 

Delta 

Cost safety 
performance [-] 

0.117 0.131 0.014 

Cost customer 
acceptance [-] 

0.061 0.110 0.049 

 
Direct and hybrid optimizers: In the following, the 
direct and hybrid optimization methods are 
investigated with a few methods available in 
Optimus. Figure 12 shows the convergence of the 
investigated optimizers with regard to the total cost 
(Equation 7) which is defined as 
௧௢௧௔௟ݐݏ݋ܿ  = 0.5 ∗ ௦௣ݐݏ݋ܿ + 0. 5 ∗ ௖௔ݐݏ݋ܿ  (Eq. 7) 
 
The combination of the cost functions safety 
performance and customer acceptance is required to 
convert the multi-objective optimization (MOO) into 
a single–objective optimization (SOO) since the 
optimizers are all single-objective optimizers with the 
exception of the ClearVu Global Optimizer. Besides, 
the number of evaluations of the simulation 
model is limited to 700 in order to obtain results in a 
convenient computation time of about 9 hours on the 
used workstation. 

 
Figure 12.  Convergence of different optimizers 
 
The hybrid optimizer “Adaptive Region” [11] 
performs worst, regardless of the size of the initial 
search window. The performance of the ClearVu 
Global Optimizers, both SOO and MOO, range 
between the Adaptive Region and the Efficient 
Global Optimizer . The ClearVu Global Optimizer is 

a direct optimizer. The hybrid optimizer Efficient 
Global Optimizer (RBF) [10] performed best and 
converges after only approximately 300 iterations. 
The additions Kriging or RBF in brackets describe 
the internally used metamodels during the 
optimization process.  
 
Exemplary results from the optimization 
The exemplary results again are from the same 
optimization setup as before. 74 Euro NCAP load 
cases from 2016 and 700 iterations. 7.5 hours 
computation time on a workstation with 8 cores and 
51.800 simulations were needed to obtain the 
optimization result. Figure 13 shows a pareto plot 
with both cost functions safety performance and 
customer acceptance. Additional information is 
added into the plot for two specific parameter sets ௢ܲ௣௧,ଵ and ௢ܲ௣௧,ଶ on the pareto front (red dotted). For 
reasons of clarity, only the Euro NCAP points are 
displayed and the average and maximum initiating 
time of the AEB before the time of unavoidableness. 
Of course, many more values could be plotted as 
well. ௢ܲ௣௧,ଵ shows a better customer acceptance than ௢ܲ௣௧,ଶ but at the same time worse safety performance. 
The average time of first braking before ݐ௨௔ is 0.26 s 
later with ௢ܲ௣௧,ଶ compared to ௢ܲ௣௧,ଵ.  

 
Figure 13.  Pareto plot with results from the 
optimization 
 
Additional analysis with both chosen parameter sets ௢ܲ௣௧,ଵ and ௢ܲ௣௧,ଶ are made with load cases from 
GIDAS (only collision load cases). For this 
exemplary analysis, the load cases are selected 
depending on the following criteria: 
• object class of the collision opponent (vehicle or 

pedestrian) 
• velocity vectors point in the same direction with a 

maximum deviation of 45° (only for vehicle 
opponents) 

• collision opponent in the sensor field of view 
• no driver braking before the collision 
247 load cases with vehicle opponent and 341 load 
cases with pedestrian opponent fulfill the criteria. 
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Table 2 shows the percentage of avoided collisions 
and the average velocity reduction.  
 

Table 2. 
 Load cases with 

vehicle collision 
Load cases with 

pedestrian collision 
 ૛,࢚࢖࢕ࡼ ૚,࢚࢖࢕ࡼ ૛,࢚࢖࢕ࡼ ૚,࢚࢖࢕ࡼ 

Number of simulated 
load cases [-] 

247 247 341 341 

Percentage of avoided 
collisions [%] 

18.2 44.5 10.3 39.3 

Average velocity 
reduction [kph] 

15.5 25.0 13.9 21.8 

 
In both vehicle and pedestrian load cases parameter 
set ௢ܲ௣௧,ଶ obviously performs better. In load cases 
with vehicle collisions 26.3 % more collisions could 
be avoided and the velocity reduction is 9.5 kph 
higher. In load cases with pedestrian collisions even 
29 % more collisions could be avoided and the 
velocity reduction is 7.9 kph higher. 
 
Validation of simulation results with vehicle tests 
Vehicle tests with an optimized parameter set ௢ܲ௣௧  
have been conducted to validate the simulation 
results. Typical Car-to-Car Rear Stationary (CCRs) 
tests were used and the vehicle under test (VUT) and 
the target objects were equipped with reference 
instrumentation. The remaining gap between VUT 
and the target objects was measured and compared to 
the simulation results. A very good transferability of 
the simulation results could be found. The maximum 
error was 0.71 m and the average error was about 
0.28 m. 
 

DISCUSSION 

This chapter is structured into two subchapters: the 
discussion of the specific results in this paper and the 
discussion of the overall approach. 
 
Specific results 
In total three optimization methods were analyzed out 
of which the hybrid optimization performed best. 
Both convergence was reached most rapidly and the 
costs were lowest no matter what internal metamodel 
was used. Despite this result a new analysis should be 
conducted if the AEB function changes drastically 
with regard to the number of parameters investigated, 
linearity of the model, etc. 
An exemplary optimization of an AEB function was 
conducted. The intention of the authors is the 
demonstration of the whole optimization process and 
parameter determination, not the analysis of the 
single outcome.  
The validation of the simulation results were 
conducted only in Car-to-Car Rear stationary tests 

with reference instrumentation. Nevertheless, in 
many other load cases with dynamic VUT and 
dynamic objects the transferability of the simulation 
results is still very good. 
 
Overall approach 
The presented SIL-based approach could also be 
done HIL-based, but would then be much slower.  
The advantages of this SIL-based approach are: 
• Hazard-free 
• Low time exposure 
• High test coverage 
• Reproducability 
• Complex load cases possible 
But there are also challenges which have to be 
considered for broader future applications. The 
limitations of the presented methodology are 
primarily given by the quality of the embedded 
vehicle and environment simulation model. The 
current simulation model gives ideal 2D algorithm 
input signals sufficient for good weather conditions 
and stationary vehicle maneuvers with little vehicle 
yaw, pitch and roll movement. For realistic 
simulation results even under complicated driving or 
perception conditions more sophisticated vehicle and 
environment sensor models are required. 
Nevertheless a potential analysis of predictive 
algorithms can be done using ideal sensor signals in 
the optimization process. The degradation of 
effectivity and robustness by the artificial worsening 
of sensor input signals can be analyzed afterwards to 
incrementally separate algorithm and sensor effects. 
Of course in terms of future piloted driving functions 
real vehicle validation will additionally be necessary 
to a large extent both to generate validated simulation 
models and to reveal unconsidered statistical effects 
in the simulation models. 
 

CONCLUSION 

This paper presents a simulation-based method 
automizing the application, performance evaluation 
and testing of predictive safety functions using the 
example of current AEB systems. The approach 
addresses the growing scenario complexity and the 
increasing performance requirements with several 
intended uses along the function development 
process. The approach overall aims at reducing 
specification, application and test costs by continuous 
simulation along the whole development process. 
It provides a valuable contribution to the design and 
testing of safe assisted and piloted driving functions.  
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