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ABSTRACT 

 

Research Question/Objective: 

The National Highway Traffic Safety Administration (NHTSA) is actively studying the implementation of 

Advanced Automatic Collision Notification (AACN) systems in motor vehicles.  This technology allows motor 

vehicles to notify a Public Safety Answering Point (PSAP), such as a 911 call center, in the event of a severe crash.  

The system provides crash location, vehicle identification information, as well as a prediction of severe injury to 

occupants in the motor vehicle.  This paper describes the development of a statistical model that predicts the 

presence of severely injured and fatal occupants in a motor vehicle involved in a crash. 

 

Methods and Data Source: 

A logistic regression model was developed using data from the 1999 – 2015 Crashworthiness Data System (CDS) of 

the National Automotive Sampling System (NASS).  The binary response variable indicates whether or not a 

crashed vehicle contains a severely injured occupant or a fatally injured occupant, defined by an Injury Severity 

Score (ISS) of 16 or greater.  The predictors are those recommended by the Centers for Disease Control and 

Prevention (CDC) National Expert Panel on Field Triage, which are delta-V, vehicle body type, multiple vs. single 

impact, seat belt usage, and principal direction of force.  The final dataset is at the vehicle level. 

 

Results: 

The area under the receiver operator characteristic curve (AUC) was 0.843, indicating that the model was able to 

discriminate between vehicles with and without severely injured occupants.  At the CDC recommended 0.20 risk 

threshold, the model produced a sensitivity rate of 26%, a specificity rate of 99%, and identified 41% of vehicles 

with a fatally injured occupant.   

 

Conclusion: 

The sensitivity rate at the CDC recommended 0.20 risk threshold missed 59% of vehicles with a fatally injured 

occupant.  A preliminary cost-benefit analysis showed that the optimal threshold was close to 0.008 after 

considering the cost of lives saved versus the cost of overtriaging minor injured people using the AACN algorithm.  

At the 0.008 threshold, 92% of fatal occupants are predicted, the sensitivity is 91%, and the specificity is 60%, 

which comes close to the recommended levels by the American College of Surgeons.   

 

Limitations: 

An AACN system uses data from the event data recorder (EDR) of a vehicle; however, the model developed in this 

paper was trained with data collected from crash investigations, which may differ from EDR data.  Also, this paper 

only considered the logistic regression model, whereas other data mining classifiers which may produce better 

results.  The initial set of predictors was limited to those selected by the CDC Expert Panel. 
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INTRODUCTION 

 

In the event of a crash, an Advanced Automatic 

Collision Notification (AACN) system makes an 

emergency wireless call to a telematics service 

provider to send the vehicle’s GPS location and 

crash-related data, and establishes a voice 

communications channel to the emergency call 

center.  AACN differs from its predecessor, the 

Automatic Collision Notification (ACN) by including 

crash severity data as well as a prediction of severe 

injury.  The prediction of severe injury is 

recommended to be used as part of the Emergency 

Medical Services (EMS) triage protocol (National 

Center for Injury Prevention and Control, 2008) to 

determine which facility to transport an injured 

patient to (e.g. a local hospital or a trauma center that 

has additional experience and equipment for treating 

severely injured people). 

 

The purpose of this paper is to develop a logistic 

regression model that predicts the presence of 

severely injured and fatal occupants in a crashed 

motor vehicle.  Published injury severity predictive 

algorithms were examined in preparation for this 

paper:  an algorithm developed by Kononen et al. 

(2011) for GM OnStar®, an algorithm developed by 

Bahouth et al. (2012) for BMW, and an algorithm 

developed by Stitzel et al. (2016) for Toyota.  Similar 

to the model developed by Kononen et al. (2011), the 

model developed for this paper follows the approach 

laid out by the Centers for Disease Control and 

Prevention (CDC) Expert Panel on Field Triage.  In 

2008, CDC assembled a panel of experts from 

various fields such as emergency medicine, trauma 

surgery, public health, vehicle telematics, and vehicle 

safety.  The panel’s purpose was to “develop a 

medical protocol for utilization of AACN data from 

crashes to better predict severity of injury and use 

this information to improve the ability to respond to 

crashes and appropriately triage crash victims.”  

They made several recommendations including a list 

of predictor variables, criteria for severe injury, and a 

choice of risk threshold.  We used these 

recommendations as a starting point in this study, and 

performed tests to assess their validity. 

 

 

DATA 

 

The predictive model was developed using the 

Crashworthiness Data System (CDS).  It is the only 

source of data that provides detailed information on 

injuries as well as crash severity.  CDS is a nationally 

representative probability sample survey whose target 

population is police reported motor vehicle crashes 

on a trafficway involving at least one passenger car, 

pickup, van, or SUV that was towed from the scene 

due to damage.  Crash investigators visit an annual 

sample of about 5,000 crashes to conduct a vehicle 

and scene inspection.  The CDS three stage sample 

design and weight computation are described by 

Zhang and Chen (2013). 

 

This study used CDS years 1999 – 2015 and applied 

the following filter criteria:   

1. Passenger vehicles only (passenger cars, 

SUVs, vans, and pickups). 

2. Deformation locations are front, right, left, 

and back only (no top or under). 

3. Direction of force is between impact points 

1 o'clock and 12 o'clock. 

4. Vehicle model years 2000 – 2016. 

5. Front row passengers only. 

6. Passenger ages 0 – 97. 

7. Planar crashes (no rollovers). 

 

In addition to these filters, each record (vehicle) must 

also meet the crash conditions required for the 

AACN system to make a notification call.  Kononen 

et al. (2011) used the condition of delta-V ≥ 15 mph 

or airbag deployment, which is also applied in this 

study.  After removing observations with missing 

data, the final data set has 13,146 records, with a 

weighted total of 4,206,182.  Each record represents a 

vehicle. 

 

Response variable 

The binary response variable, 𝑦𝑖 , indicates whether or 

not a crashed vehicle contains a severely injured 

occupant or a fatally injured occupant.  A value of 1 

was assigned to a vehicle if any of its occupants 

experienced an Injury Severity Score (ISS) of 16 or 

higher, and zero otherwise.  The weighted rate of 

occurrence of severe injury is 2% (Table 1). 

 

𝑦𝑖 = {
1, 𝑖𝑓 𝑎𝑛𝑦 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡 𝑤𝑖𝑡ℎ 𝐼𝑆𝑆 ≥ 16
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

 

An ISS of 16 or greater was used to indicate severe 

injury and is an anatomic scoring system based on the 

individual’s three highest Abbreviated Injury Scale 

(AIS) values in different body regions.  This was the 

outcome of interest specified by the 2008 CDC 

Expert Panel, when they defined severe injury in the 

context of vehicle telematics.  The American College 

of Surgeons (ACS) periodically publishes a 

document titled “Resources for Optimal Care of the 

Injured Patient”, which represents the ACS 

Committee on Trauma’s guidelines and 

recommendations for all aspects of trauma care, 

including pre-hospital care.  In the 2014 version, the 
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ACS also recommended an ISS of 16+ be used to 

define major trauma patients.  Therefore, this paper 

focuses on ISS of 16 or greater as the indicator for 

severe injury.   

 

Table 1 Distribution of the Response Variable 

𝒚𝒊 Frequency Weighted 

Frequency 

Percent 

0 11,984 4,123,989 98 

1 1,162 82,194 2 

Total 13,146 4,206,182 100 

 

 

VARIABLE SELECTION 

 

An important step in building a statistical model is 

determining which variables should be included in 

the model.  For this study, the initial set of predictors 

were those recommended by the CDC Expert Panel 

(Table 2).  These variables can be electronically 

transmitted by the vehicle to the AACN providers in 

the event of a crash. 

 

Table 2. Selected Predictors and Their 

Descriptions 

Variable 

name 

Type Values Description 

LN_DVMPH Continuous 0 – 100 Change in the 

vehicle 

velocity. Log 

of delta-V. 

DOF1 Categorical Front, 

Left, 

Right, 

Rear 

Direction of 

force. 

CBELT Categorical Yes, No Seat belt 

usage.  Yes = 

all occupants 

belted.  No = 

at least one 

occupant 

unbelted. 

BODY Categorical Car, 

SUV, 

Pickup, 

Passenger 

van 

Type of 

vehicle. 

ACCSEQ Categorical Multiple, 

Single 

Number of 

significant 

impacts to a 

vehicle. 

Note:  The variable names are specific to this study 

and are not the same as in CDS. 

 

 

 

 

A univariate analysis was conducted to determine 

whether each predictor is "significantly" related to 

the response variable.  This was done using the 

likelihood ratio chi-squared test and the Wald test. 

 

The likelihood ratio chi-squared test was used to test 

the null hypothesis of statistical independence 

between the response variable and each predictor.  

The p-value for this test is less than 0.0001 for each 

predictor (Table 3), which provides evidence of an 

association.  The large chi-squared statistics may be 

heavily influenced by the large weighted sample size. 

 

Table 3. Likelihood Ratio Chi-Square Test 

Predictor Likelihood 

Ratio Chi-

Square 

Statistic 

DF Probability 

ACCSEQ 12,384 1 < 0.0001 

BODY 6,257 3 < 0.0001 

CBELT 31,948 1 < 0.0001 

DOF1 27,091 3 < 0.0001 

LN_DVMPH 131,696 1 < 0.0001 

 

A univariate logistic regression model was fit for 

each predictor to test for the significance of the 

coefficient using the Wald Chi-Square test statistic, 

 

𝑊 =
(𝛽̂ − 𝛽1)

2

𝑉𝑎𝑟̂(𝛽̂)
 

 

Under the null hypothesis that 𝛽1 is equal to zero, the 

statistic W follows a chi-square distribution with 1 

degree of freedom.  All the predictors and their 

design variables had p-values less than 0.05, except 

for the Pickups design variable for the predictor 

BODY (vehicle body type).  It had a p-value of 

0.6852 (Table 4).  However, the Type 3 multivariate 

Wald test for the BODY variable, which tests all its 

design variables simultaneously, has a p-value of 

<0.0001. 

 

Table 4. Wald Chi-Square Test for the BODY 

Variable 

Param DF Est. Std 

Err 

Wald 

Chi-Sq 

Pr > 

ChiSq 

Intercept 1 -3.766 0.1579 568.3079 <.0001 

BODY 

(Pickups) 

1 -0.126 0.3116 0.1643 0.6852 

BODY 

(SUV) 

1 -0.751 0.1891 15.7759 <.0001 

BODY 

(Vans) 

1 -0.757 0.3521 4.6181 0.0316 
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In addition to the univariate analysis, a stepwise 

procedure was conducted.  This procedure 

systematically checks for the “importance” of 

variables, and either includes or excludes them in the 

model depending on a decision rule.  The procedure 

starts off with no predictors in the model.  In each 

step, the predictor with the largest Score chi-square 

statistic that meets the p < 0.01 level is included in 

the model; while the predictor considered least 

significant according to the Wald test and does not 

meet the p < 0.01 level is removed from the model.  

The process terminates if no further predictor can be 

added or if the current model is identical to a 

previously visited model.  Results of this method 

(Table 5) show that all predictors entered the model, 

and none were removed.  The first variable to enter 

was delta-V and the last to enter was ACCSEQ 

(number of impacts to a vehicle).  The large Score 

test statistic values may be heavily influenced by the 

large weighted sample size. 

 

Table 5. Summary of Stepwise Selection 

Step Var Entered Var 

Rem-

oved 

DF Score 

Chi-Sq 

Pr>Chi 

Sq 

1 LN_DVMPH - 1 123,576 <.0001 

2 DOF1 - 3 37,454 <.0001 

3 CBELT - 1 37,650 <.0001 

4 BODY - 3 4,913 <.0001 

5 ACCSEQ - 1 4,880 <.0001 

 

Results from the likelihood ratio chi-square test, the 

Wald test, and stepwise procedure show that it is 

reasonable to use all the CDC recommended 

predictors for the multivariate model. 

 

 

 

MODELING 

 

Logistic regression was used to estimate the 

probability that a crashed vehicle contained a  

seriously injured or fatal occupant, conditional on the 

values of the predictor variables.  The logistic 

regression model is, 

 

𝑃(𝑌 = 1|𝒙) =
𝑒𝛽0+ 𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝

1+𝑒𝛽0+ 𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝
 ,          Eq. (1) 

 

where p = 9 (total predictor variables),  𝐱′ =
(𝑥1, 𝑥2, … , 𝑥p) is a vector of predictor variables, and 

𝛽0, … , 𝛽𝑝 are parameters.  There are now nine 

independent variables instead of the initial five since 

design variables were created for the BODY (vehicle 

body type) and DOF1 (direction of force) variables.   

 

The model was fit using the maximum likelihood 

method, which produces an estimate for the 

parameters that maximizes the probability of 

obtaining the observed set of data.  The 

SURVEYLOGISTIC procedure in SAS was used to 

incorporate the CDS survey design by specifying the 

primary sampling unit (PSU), the PSU stratum, and 

weight variables.  Results of fitting the multiple 

logistic regression model are given in Table 6. 

 

Testing for the significance of the model 

To assess the overall significance of the coefficients 

for the predictor variables in the model, the 

likelihood ratio test was used with the null hypothesis 

that all coefficients in the model are equal to zero.  

The p-value for the test is < 0.0001 (Table 7), 

rejecting the null hypothesis, and conclude that at 

least one coefficient was different from zero. 
 

Table 6. Maximum Likelihood Estimates 

Parameter  DF Estimate Std. 

Error 

Wald 

Chi-

Square 

Pr > 

ChiSq 

Standardized 

Estimate 

95% Confidence 

Limits 

Intercept  1 -14.4707 0.9508 231.6557 <.0001  (-16.3341, -12.6072) 

ACCSEQ Multiple 1 0.5392 0.1734 9.6657 0.0019 2.3948 (0.1993, 0.8792) 

BODY Pickups 1 -0.5337 0.2015 7.0141 0.0081 -1.4104 (-0.9287, -0.1387) 

BODY SUV 1 -0.7507 0.2056 13.3315 0.0003 -2.8966 (-1.1537, -0.3477) 

BODY Vans 1 -0.4891 0.4739 1.0654 0.3020 -1.1083 (-1.4179, 0.4397) 

CBELT All Belted 1 -1.4283 0.1182 145.9042 <.0001 -5.1421 (-1.6601, -1.1966) 

DOF1 Front 1 1.0557 0.3984 7.0230 0.0080 4.0478 (0.2749, 1.8366) 

DOF1 Left 1 2.6775 0.4530 34.9351 <.0001 6.0612 (1.7897, 3.5654) 

DOF1 Right 1 1.7839 0.4048 19.4198 <.0001 4.3774 (0.9905, 2.5774) 

LN_DVMPH  1 3.5073 0.2376 217.8784 <.0001 13.6964 (3.0416, 3.9730 

Note:  The column between Parameter and DF specifies the comparison group.  For example, Multiple is indicated 

for the variable ACCSEQ because the estimate corresponds to that of multiple event crashes in reference to single 

event crashes. 
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Table 7. Testing Global Null Hypothesis: Beta=0 

Likelihood Ratio Test DF Pr > ChiSq 

201,000.246 9 <.0001 

 

The Vans design variable for BODY (vehicle body 

type) is not significant with a p-value greater than 

0.05 for the univariate Wald test, and a confidence 

interval that includes zero (Table 6).  However, the 

Type 3 multivariate Wald test, which tests the null 

hypothesis that all the coefficients of the design 

variables for BODY are simultaneously zero, has a p-

value of <0.0001 (Table 8).  Hence the BODY 

variable is not excluded from the model.  

 

Table 8. Type 3 Analysis of Effects 

Effect DF Wald 

Chi-Sq 

Pr > 

ChiSq 

ACCSEQ 1 9.6657 0.0019 

BODY 3 22.1161 <.0001 

CBELT 1 145.9042 <.0001 

DOF1 3 91.1701 <.0001 

LN_DVMPH 1 217.8784 <.0001 

 

Ranking the predictors 

A standardized coefficient indicates how many 

standard deviations of change in the respondent 

variable are associated with a one standard deviation 

increase in the predictor variable.  Shown in the 8th 

column of Table 6, the highest standardized 

coefficient (absolute value) belongs to the 

LN_DVMPH (log of delta-V) predictor followed by 

CBELT (all occupants belted or not) and the DOF1 

(direction of force) design variables.  The lowest 

standard coefficient belongs to the BODY (vehicle 

body type) design variables and ACCSEQ (number 

of significant impacts to the vehicle).  This coincides 

with the order in which the variables entered the 

stepwise method (Table 5). 

 

Interaction effects 
Two-way interaction effects were entered into the 

main effects model, one at a time, and checked for 

statistical significance.  All interaction effects either 

had p-values > 0.05 for the univariate Wald test, or 

did not make scientific sense.  Hence no interactions 

terms were included in the model. 

 

Distribution of the estimated probabilities 

The estimated probabilities produced by the model 

are very low, with a median of only 0.0059 (Table 9).  

This is due to the rarity of the occurrence of severe 

injury, with only 2% of the vehicles having at least 

one occupant with an ISS of 16 or greater (Table 1). 

 

Table 9. Weighted Quantiles of the Estimated 

Probabilities 

Quantile Estimate 

100% Max 0.950031471 

99% 0.221031351 

95% 0.085091246 

90% 0.043765134 

75% Q3 0.015382169 

50% Median 0.005946187 

25% Q1 0.002076919 

10% 0.000794507 

5% 0.000375181 

1% 0.000155431 

0% Min 0.000004069 

 

 

ASESSING THE PREDICTIVE ACCURACY OF 

THE MODEL 

 

To assess the predictive accuracy of the model, the k-

fold cross-validation method was used.  In this 

method the data was split into k = 10 equal-sized 

subsets.  One of the subsets was chosen for testing 

the model, while the remaining nine subsets were 

used for training the model.  This was repeated k = 

10 times so that each record was used for training 

exactly nine times and testing exactly once.  The 

resulting estimated probability of each record was 

used to assess the discrimination and accuracy of the 

model.   

 

Area under the curve 

Discrimination refers to the model’s ability to 

distinguish low from high risk vehicles.  This means 

vehicles with y = 1 should have higher probability 

estimates than vehicles with y = 0.  Discrimination 

can be quantified by the area under the receiver 

operating characteristic curve (AUC), which is a 

curve constructed by plotting sensitivity against 1-

specificity for different cut-offs.  An intuitive 

explanation of the AUC is that if each vehicle with y 

= 1 is paired with each vehicle with y = 0, then the 

AUC is the proportion of the pairings where the 

vehicle with y = 1 has a higher estimated probability 

than the vehicle with y = 0.  The AUC for this model 

is 0.843, which is considered excellent discrimination 

according to Hosmer and Lemeshow (2000). 

 

Classification table 

A classification table cross-classifies the binary 

response variable with the prediction of the model (1 

or 0).  The estimated probabilities are converted to 

predictions by first selecting some risk threshold, t, 

where 0 < t < 1 (statistical texts refer to this as the 

cutpoint or the cut-off).  If the estimated probability 
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is greater than or equal to t, then set the prediction 

equal to 1; otherwise set the prediction equal to 0.  

Table 10 shows the classification table, with 

weighted counts, for a threshold of 0.20, which is the 

recommended threshold by the CDC Expert Panel.  

The overall rate of correct classification is estimated 

as (4,093,805 + 21,688)/ 4,206,182 = 98%, with 26% 

(21,688/82,194) of the y = 1 group (sensitivity) and 

99% (4,093,805/4,123,989) of the y = 0 group 

(specificity) being correctly classified. 

 

Table 10. Classification Table (Weighted) Using a 

Threshold of 0.20. 

 Response  

Predicted 0 1 Total 

0 4,093,805 60,506 4,154,311 

1 30,184 21,688 51,872 

Total 4,123,989 82,194 4,206,182 

 

Aside from sensitivity and specificity, the model was 

also assessed in how well it identified vehicles with a 

fatally injured occupant, referred to as fatal vehicles.  

Fatal vehicles are a subset of the y = 1 group, and 

should have a prediction of 1.  The proportion of fatal 

vehicles identified by the model (having a predicted 

value of 1) was 41%, using the 0.20 threshold.  

Figure 1 plots the sensitivity, specificity, and percent 

of fatal vehicles identified by the model at different 

thresholds. 

 

Relating sensitivity and specificity to undertriage 

and overtriage, and their recommended levels 

The 2014 edition of the American College of 

Surgeons (ACS) Resources for Optimal Care defines 

undertriage as severely injured patients transported to 

lower-level trauma centers or other facilities, and 

overtriage as minimally injured patients transported 

to higher-level trauma centers.  The ACS gives 

higher priority to reduction of undertriage, because 

undertriage may result in preventable mortality or 

morbidity from delays in definitive care.  The 

recommended level for undertriage is 5%.  

Overtriage may result in higher costs and also 

increase the burden for higher-level trauma centers 

because resources needed for more severely injured 

patients are unnecessarily being used for minimally 

injured patients.  Acceptable rates for overtriage are 

in the range of 25-35% according to the ACS. 

 

In the context of the injury prediction algorithm 

developed here, the sensitivity of the algorithm is 

equal to 100% minus the undertriage rate (i.e. a 

sensitivity of 95% will result in 95% of seriously 

injured occupants being correctly identified as 

seriously injured, and 5% being undertriaged, or 

incorrectly identified as not seriously injured).  

Specificity, or the true negative rate (proportion of 

occupants with ISS < 16 who are correctly identified 

by the algorithm as having a low risk of injury), is 

 

 
Figure 1. Plot of Sensitivity, Specificity, and Percent Fatal Vehicles Identified by Threshold. 
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equal to 100% minus the overtriage rate.  It is 

noteworthy that at the CDC recommended 0.20 risk 

threshold, the prediction algorithm falls far short of 

the recommended 5% undertriage rate (instead 

resulting in a 74% undertriage rate), while it far 

exceeds the recommendations for overtriage 

(predicting only 1% overtriage, rather than the ACS 

recommended 25-35%). 

 

In order to meet the 5% undertriage rate, the 

threshold needs to be lowered from the 0.20 

threshold.  As shown in Figure 1, lowering the 

threshold increases both sensitivity and percent of 

fatal vehicles identified, but it also lowers the 

specificity.  Lowering the specificity is equivalent to 

increasing the rate of false positives (false alarms), 

which results in overtriage costs.  Finding the right 

balance of increasing the percent of fatal vehicles 

identified by the model while minimizing the rate of 

false positives is addressed in the next section. 

 

 

FINDING AN OPTIMAL THRESHOLD 

 

As demonstrated above, at the CDC recommended 

0.20 risk threshold, the prediction algorithm falls far 

short of the undertriage rates recommended by the 

ACS.  To provide a basis for choosing an optimal 

threshold that deviates from the CDC 

recommendation, the costs of under- and overtriage 

were evaluated.  For a preliminary determination of 

an ideal threshold for the model, the benefit of true 

positives was weighed against the cost of false 

positives at thresholds below 0.20.  The benefit of 

true positives is the economic savings from those that 

would have died but were saved due to AACN.  The 

cost of false positives comes from overtriage, which 

is transporting occupants without serious injuries to 

major trauma centers. 

 

Benefits 

The benefits at a specific threshold is the number of 

lives saved by AACN multiplied by the dollar 

amount saved per fatality prevented.  Lee et al. 

(2017) estimated the number of lives saved by 

AACN to be, at most, 721 per year.  This number 

assumes the predictive model identifies 90% of the 

fatal occupants.  This percentage is replaced with the 

appropriate percentage at each threshold.  As for the 

economic savings, Blincoe et al. (2015) estimates the 

comprehensive fatality injury cost to be $9,129,066.1  

                                                           
1 This equals comprehensive costs less congestion 

costs and property damage costs.  Comprehensive 

costs consist of tangible losses (such as property 

Since a fatality prevented by AACN cannot be 

considered to be uninjured, it is assumed that the 

saved occupant will still have a maximum AIS 

(MAIS) 4 injury level with a comprehensive injury 

cost of $2,414,252.1  The cost savings of preventing a 

fatality is the difference between these two injury 

costs which is $6,714,814.  The benefit at a particular 

threshold, t, can now be expressed as, 

 

𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑡) =
721

0.90
× %𝐹𝑎𝑡𝑎𝑙𝑠𝑃𝑟𝑒𝑑(𝑡) × $6,714,814 

 

Costs 

The cost at a specific threshold is the number of 

minor injured occupants (ISS < 16) unnecessarily 

treated at a trauma center multiplied by the cost of 

overtriage per patient.  The number of occupants with 

ISS < 16 is estimated to be around 4 million annually, 

using CDS 2006-2008.  Since not all of these 

occupants will be sent to a trauma center as a direct 

result of AACN, the following reduction factors were 

applied: 

1. % overtriage NOT identified by steps 1 and 

2 of the triage protocol = 78%.2 

2. % of occupants with ISS < 16 that were in a 

crashed vehicle that met the conditions for 

the AACN system to make a call (i.e. delta-

V ≥ 15 or airbag deployment) = 60%. 

3. % access to trauma center = 80% (NHTSA, 

2012). 

 

Applying the reduction rates to the 4 million 

occupants produces 1,497,600 which is then applied 

the rate of false positives at a specific threshold.  The 

rate of false positives is equal to one minus the 

specificity computed at the occupant level.   

 

The cost of minor injured occupants treated at a 

trauma center is approximately $5,000 - $10,000 

according to Newgard et al. (2013) and Faul et al. 

(2012).  Using the midpoint of this range, the cost at 

a particular threshold is,  

 
𝐶𝑜𝑠𝑡(𝑡) = 1,497,600 × (1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑡)) × $7,500 

 

Computed values for benefits, costs, and their 

difference are shown in Table 11 and plotted in 

Figure 2.  At the CDC recommended threshold of 

0.20, benefits exceed costs by about $2.18 billion.  

As the threshold is lowered, benefits continue to be 

                                                                                       
damage, medical care, insurance costs, legal costs, 

etc.) plus costs associated with lost quality of life. 
2 Newgard et al. (2011) and Brown et al. (2011) show 

14% - 22% overtriage using just steps 1 and 2 of the 

triage protocol. 
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greater than costs.  Around the 0.06 threshold, costs 

start to climb at a higher rate than benefits, and 

eventually the two become equal somewhere between 

the 0.008 and 0.007 thresholds.  After this point costs 

exceed benefits. 

 

Since lowering the threshold results in more lives 

saved, then 0.008 is the threshold where the 

maximum number of lives can be saved without costs 

exceeding benefits.  This number seems to be the 

logical choice as the optimal threshold.  At this 

threshold, 92% of fatal occupants are predicted, the 

sensitivity is 91% (undertriage rate of 9%), and the 

specificity is 60% (overtriage rate of 40%).  These 

results are approximately consistent with the ACS 

recommended under- and overtriage levels of 5% and 

25-35% respectively. 

 

The small threshold of 0.008 may seem to suggest 

that the model will predict nearly all vehicles that 

meet the AACN crash criteria to have a severely 

injured occupant.  This is not the case.  According to 

the distribution of the estimated probabilities (Table 

9), among vehicles that meet the AACN crash 

criteria, the proportion having an estimated 

probability greater than 0.008 is around 40%. 

 

Although other published logistic regression models 

(e.g. Bahouth et al. 2012; Stitzel et al. 2015) did not 

consider the economic costs and benefits of under- 

and overtriage, their optimal predictive performance 

occurred at thresholds lower than the CDC 

recommended 0.20, similar to the findings of the 

current study. 

 

 

CONCLUSION 

 

The purpose of this paper was to develop a logistic 

regression model that predicts the presence of 

severely injured and fatal occupants in a crashed 

motor vehicle.  The model was trained using 1999-

2015 CDS data, accounting for its sample design.  

The binary response variable indicates whether or not 

a crashed vehicle contains a severely injured 

occupant or a fatally injured occupant.  The 

predictors are those recommended by the CDC 

Expert Panel on Field Triage, which are delta-V, 

direction of force, vehicle body type, seat belt use, 

and number of crash events (multiple or single).  The 

most significant predictor is delta-V followed by seat 

belt use and direction of force.  At the CDC 

recommended threshold of 0.20, the model produces 

an AUC of 0.843, a sensitivity of 26%, a specificity 

of 99%, and predicts 41% of the fatal vehicles 

(Figure 1).  Based on a preliminary cost-benefit 

analysis considering the cost of lives saved versus the 

cost of overtriaging minor injured people using the 

AACN algorithm, the study showed that the optimal 

threshold was close to 0.008.  At this threshold, 92% 

of fatal occupants are predicted, the sensitivity is 

91%, and the specificity is 60%. 

 

 

LIMITATIONS AND FUTURE 

CONSIDERATIONS 

 

1. An AACN system uses data from the event 

data recorder (EDR) of a vehicle.  The 

model developed in this paper, as well as 

others, were not trained with EDR data but 

with data collected from crash investigations 

(CDS).  There may be differences between 

these two data sources, particularly the 

WinSmash delta-V estimates in CDS that 

have been found to underestimate EDR 

delta-V by as much as 23%.  This study 

attempted to use EDR data but found it to be 

quite incomplete. 

 

2. This study only considered predictors 

recommended by the CDC Expert Panel.  

While these variables were approved by 

subject matters experts, this study did not 

consider all possible predictors in CDS and 

other data sets. 

 

3. This paper only considered one statistical 

model, logistic regression, among many 

classifiers that may produce better results.  

Kusano and Gabler (2014) compared several 

competing classification algorithms for 

predicting injured occupants in vehicle 

crashes and concluded that logistic 

regression slightly outperformed the 

machine learning algorithms based on 

sensitivity and specificity of the models. 
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Table 11. Benefits and Costs at Different Threshold Levels Below 0.20 

Threshold Specificity 

(occupants) 

% Fatals 

predicted 

(occupants) 

Benefits Costs Benefits minus 

Costs 

0.000 0 1 $5,379,312,104  $11,232,000,000  ($5,852,687,896) 

0.005 0.45261 0.93756 $5,043,416,563  $6,148,264,446  ($1,104,847,883) 

0.007 0.54937 0.92921 $4,998,535,709  $5,061,452,716  ($62,917,007) 

0.008 0.57975 0.91807 $4,938,578,607  $4,720,220,174  $218,358,433  

0.010 0.62122 0.89965 $4,839,495,036  $4,254,452,851  $585,042,185  

0.020 0.79856 0.86168 $4,635,224,187  $2,262,520,828  $2,372,703,359  

0.030 0.85933 0.79801 $4,292,737,805  $1,579,995,498  $2,712,742,307  

0.040 0.89118 0.76739 $4,128,026,556  $1,222,219,386  $2,905,807,171  

0.050 0.91967 0.71522 $3,847,380,225  $902,317,804  $2,945,062,421  

0.060 0.93615 0.68907 $3,706,736,390  $717,113,769  $2,989,622,621  

0.070 0.94585 0.66701 $3,588,052,336  $608,160,059  $2,979,892,276  

0.080 0.95181 0.64044 $3,445,146,443  $541,242,997  $2,903,903,446  

0.090 0.95953 0.61765 $3,322,509,772  $454,586,639  $2,867,923,132  

0.100 0.96538 0.58943 $3,170,754,006  $388,886,788  $2,781,867,218  

0.150 0.98345 0.47427 $2,551,270,193  $185,916,103  $2,365,354,090  

0.200 0.99227 0.42096 $2,264,466,194  $86,810,724  $2,177,655,470  

 

 
Figure 2. Difference between benefits and costs by threshold levels. 
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