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ABSTRACT 
The development of automated vehicles is ongoing at a breakneck pace. The human factors challenges of designing 
safe automation systems are critical as the first several generations of automated vehicles are expected to be semi-
autonomous, requiring frequent transfers of control between the driver and vehicle. A driving simulator study was 
performed with 20 participants to study transfers of control in highly automated vehicles. We observed driver 
performance and measured comfort as an indicator of the development of trust in the system. One study drive used a 
more capable automation system that was able to respond to most events by slowing or changing lanes on its own. 
The other study drive used a less capable automation system that issued takeover requests (TORs) in all cases. Thus 
there was a change in reliability over the course of the study drives; some participants experienced the more-capable 
system first followed by the less-capable system, and others had the opposite experience. We observed three types of 
comfort profiles over the course of the drives. Some drivers started out very comfortable, while others took a long 
time to become comfortable. Takeovers were split into physical takeover, visual attention, and vehicle stabilization. 
Response time and performance measures showed that there was a 15- to 25-second period between the physical 
takeover and a return to normal driving performance. This confirms some observations in previous studies on 
transfer of control. 
 
 
INTRODUCTION 
 
Automated vehicles are under active development by 
many auto manufacturers, tier 1 suppliers, and 
technology companies. The projected benefits of 
automated vehicles are many and varied, but so are 
the concerns over their technical limitations, legal 
barriers, and human factors challenges. The National 
Highway Traffic Safety Administration (NHTSA) 
started actively investigating automated vehicles in 
2012 and has released their first policy document [1]. 
 
Transfer of control is a complex topic given the 
number of possible scenarios. An analysis of 
takeover types by Lu, et. al. [3] resulted in a unified 
framework that can be used to think about 
automation handoffs. A transfer of control (or 
takeover, transition, handoff) can result in the driver 
being in control (DC) or the automation being in 
control (AC). Moreover, they can be driver initiated 
(DI) or automation initiated (AI). This results in the 
four possible categories of transfers: DIDC, DIAC, 
AIDC, and AIAC. The underlying reason for the 
takeover can be classified as optional or mandatory. 
An optional transfer could be skipped with no 
adverse consequences, whereas missing a mandatory 
transfer would result in a safety critical event or 
crash. 
 

This study was primarily concerned with automation 
level 3, termed conditional automation by SAE [2], 
in which the vehicle takes both longitudinal and 
lateral control. Whereas level 2 automation requires 
the operator to supervise the automation and scan the 
roadway for hazards, level 3 allows the operator to 
engage in other tasks, provided they can become 
available to take over again should the system request 
it. Both level 2 and level 3 raise concerns about how 
quickly the driver can take back control should they 
need to. Drivers can quickly become out of the loop 
and then have to regain situational awareness (SA) to 
effectively drive again. Because of this, our main 
interest was in studying mandatory AIDC transfers. 
 
Bainbridge pointed out that humans are challenged 
when performing under time pressure and that when 
automation takes over the easy tasks from an 
operator, difficult tasks may become even more 
difficult [4]. Stanton and Marsden highlighted several 
potential problems that could plague automated 
vehicles, specifically when drivers must reclaim 
control from automation. These include over-
reliance, misuse, confusion, reliability problems, 
skills maintenance, error-inducing designs, and 
shortfalls in expected benefits [5], [6]. The lack of 
situational awareness that occurs when a driver has 
dropped out of the control loop has been studied for 
some time in several different contexts [7]–[9]. 
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More recently, it has been shown that drivers had 
significantly longer reaction times in responding to a 
critical event when they were in automation and 
required to intercede, compared to when they were 
driving manually [10]. More recent data suggest that 
drivers may take around 15 seconds to regain control 
from a high level of automation and up to 40 seconds 
to completely stabilize the vehicle control [11]. 
 
Takeover requests are issued by the automation to let 
the operator know that they should take back manual 
control of the dynamic driving task (DDT). The 
appropriate timing of such TORs has been a topic 
research recently. Takeover request timings of five 
and seven seconds ahead of encountering an obstacle 
in the road were tested in a driving simulator [12]. 
While it was possible for drivers to take over in only 
a couple of seconds in both conditions, there were 
more braking responses and less time to check their 
blind spots in the five-second timing condition. Some 
of the extra time in the seven-second condition was 
used for decision-making and was valuable for 
avoiding sudden braking responses. 
 
A NHTSA-funded test track study used both 
imminent and staged TORs, where the imminent 
TOR was issued once with an external threat and 
once without [13]. The staged alert had four phases 
as follows: 1) a tone followed by an informational 
message, 2) a verbal alert with a cautionary message, 
3) a repeated tone in addition to an orange visual 
alert, and 4) a repeated imminent tone with a red 
alert. The visual components were text messages with 
associated colors to indicate urgency. The four 
messages were the following: 
 

1. Prepare for manual control 
2. Please turn off autodrive 
3. Turn off autodrive now (orange) 
4. Turn off autodrive now (red) 

 
The average response time to an imminent alert was 
2.3 seconds without an external threat and 2.1 
seconds with one. The average response time to the 
staged alert was 17 seconds, which may have been 
partly due to a countdown that accompanied the 
informational warning. 
 
A driver’s trust in automation greatly influences 
whether that automation is used appropriately, 
misused, or disused. Trust should be calibrated 
appropriately so that a driver does not over- or under-
trust an automated system [14]. Lee and See 
proposed a closed-loop conceptual model of a 
dynamic process that governs trust, recognizing that 

trust might be considered as a function over time that 
can rise and fall.  
 
Trust and comfort are correlated constructs that are 
both important for human-robot interaction [15], 
[16]. Indeed, it is hard to imagine the development of 
trust without some degree of comfort being present. 
Sanders et al. identified four factors of trust: 
performance, reliance, individual differences, and 
collaboration. Another breakdown of trust included 
the following factors: predictability, dependability, 
faith, and overall trust [17], [18].  
 
A word on simulator fidelity is warranted. A series of 
driving simulator studies on adaptive cruise control 
done in the 1990s with and without motion showed 
similar results, and the authors concluded that motion 
may therefore not be necessary [19]. However, most 
recent driving simulation studies in vehicle 
automation have used higher-fidelity systems with 
motion bases. The ‘feel’ of the car from a simulator’s 
motion cues is critical to a driver who may be 
completely visually disengaged from the driving task, 
as is the case in higher automation levels. 
 
Objectives 
This project was focused on transfers from 
conditional automation to manual control. The study 
events were mandatory takeovers that could be 
thought of as expected (approaching highway exit on 
route) and unexpected (approaching a slow-moving 
vehicle). The study was conducted using the NADS-1 
high fidelity motion-base driving simulator, located 
at the University of Iowa. 
 
The study was designed to address the following 
research questions: 
 

1. To what degree do drivers trust the 
automation? 

2. Does less-capable automation decrease trust, 
and how does reliability influence trust in 
automation? 

3. When do drivers choose to begin an 
expected transfer of control, and how long 
does it take? 

4. After manual takeovers, how long does it 
take for the driver to return control to the 
automation? 

5. How long does an unexpected transfer of 
control take, including vehicle stabilization? 

6. Does the act of taking manual control have 
any associated performance decrements? 

 
It was expected that there would be decrements to the 
quality of the transfer due to the need to regain SA 
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while at the same time assuming vehicle control. 
Moreover, it was also expected that automation 
failures, resulting in TORs, would damage the 
driver’s trust in the system and that the effects of that 
reduced trust might be observed in subsequent 
driving and takeover choices. 
 
We did not consider failures in the sense that the 
vehicle failed to issue a takeover request (TOR), 
which is a particularly concerning failure mode in its 
own right. Thus while the vehicle failed to navigate 
some study events, it always successfully issued 
TORs. 
 
The term reliability was used in this research to 
indicate a change in the way the automation worked 
on similar events. In the more capable condition, the 
automation was able to navigate most study events by 
changing lanes. However, in the less capable 
condition it always issued a TOR. The automation 
capability condition was manipulated within-subjects 
across two drives, and the order of the drives was 
counterbalanced across drivers, resulting in a change 
in reliability for all drivers. 
 
METHODOLOGY 
 
A 2 (drive) x 2 (age) x 2 (gender) mixed design was 
used for this study. The within-subject independent 
variable was the automation reliability. The between-
subject independent variables were gender (male, 
female) and age (18 - 25, 25 - 55). The age variable 
was blocked by using the minimization method to 
balance out the number of participants in each group. 
A total of 20 participants provided written informed 
consent and participated in the study.  
 
Apparatus 
The National Advanced Driving Simulator (NADS) 
is located at the University of Iowa. The NADS-1 
simulator consists of a 24-foot dome in which an 
entire car cab is mounted. All participants drove the 
same vehicle—a 1996 Malibu sedan. The motion 
system, on which the dome sits, provides 400 square 
meters of horizontal and longitudinal travel and ±330 
degrees of rotation. The driver feels acceleration, 
braking, and steering cues much as if he or she were 
actually driving a real vehicle. High-frequency road 
vibrations up to 40 Hz are reproduced from vibration 
actuators placed in each wheel well of the cab. A 
picture of the NADS-1 simulator and an image from 
the interior of the dome are shown in Figure 1. 
 
The NADS-1 displays graphics by using 16 high-
definition projectors that provide 360-degrees of 
horizontal, and 40-degrees of vertical, field of view. 

The NADS produces a thorough record of vehicle 
state (e.g., lane position) and driver inputs (e.g., 
steering wheel position), sampled at 240 Hz. 
 

 
Figure 1.  NADS-1 driving simulator (left) with 
a driving scene in the dome (right). 
 
The cab is equipped with a Face Lab™ 5.0 eye-
tracking system that is mounted on the dash in front 
of the driver’s seat above the steering wheel. In the 
best-case scenario, where the head is motionless and 
both eyes are visible, a fixated gaze may be measured 
with an error of about 2º. With the worst-case head 
pose, accuracy is estimated to be about 5º. The eye 
tracker samples at a rate of 60 Hz. 
 
Driving Scenarios 
Participants completed a seven-minute practice drive 
followed by two thirty-minute study drives 
containing the same set of events (see Table 1). The 
study drives involved typical vehicle control in a 
variety of situations. Once the driver achieved 
highway speed, he or she was instructed to engage 
the automation by pressing a button on the steering 
wheel. 
 

Table 1.  Scenario events in the more and less 
capable drives (A and B) with varying takeover 

request (TOR) timing. 

Event 
More 

Capable 
(A) 

Less 
Capable  

(B) 
#1 Work zone No TOR 10 sec. TOR 
#2 Missing lane 
lines 

No TOR 10 sec. TOR 

#3 Sharp curve No TOR 10 sec. TOR 
#4 Slow lead 
vehicle 

10 sec. TOR 5 sec. TOR 

#5 Exit highway 30 sec. TOR 30 sec. TOR 
 
The practice drive scenario served to adapt 
participants to driving in the simulator, as well as 
expose them to automation control transfers and 
TORs. All five events existed in both study drives, 
but in different orders and with different automation 
capabilities. Moreover, the locations of the events as 
well as the starting and ending locations of the drives 
were also varied to minimize predictability. Towards 
the end of each drive, an expected takeover request 
took place before a scheduled exit off the highway. 
The five main events are summarized in Table 1. 
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Occasionally, a lead vehicle would slow from the 
speed limit to 55 mph for a short time, forcing the 
automation to slow the participant’s vehicle as well. 
Then the lead vehicle sped back up to the speed limit. 
These brief disturbances drew the operator’s attention 
and provided experiences in which the automation 
behaved as desired with no loss of capability. It was 
expected that these instances would help to build 
trust in the system. 
 
Driver Vehicle Interface 
Automated driving was indicated by a visual icon on 
a high heads-up display. Takeover requests were 
composed of both visual and audio cues. Visual cues 
appeared on the same display. When the driver 
needed to transfer control, a chime sound played with 
the appearance of a visual sign saying to either turn 
on or off the automation. Depending on each event 
and scenario, a TOR took place either 5, 10, or 30 
seconds prior to the event. If the driver did not 
transfer control from automated to manual in some 
set interval after the TOR fired, the automation 
system slowed the vehicle down and pulled over to 
the side of the highway. This fallback strategy is 
characteristic of SAE Level 4 automation, though 
participants were not trained on it ahead of time, and 
it was never encountered in the study. All four 
possible display icons are shown in Figure 2. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.  Automation interface in high heads-
up display location: (a) automated-mode icon in 
blue, (b) informational warning in white, (c) 
cautionary alert in yellow, (d) imminent alert in 
red. 
 
Non-Driving Task 
Participants were asked to work on trivia questions 
from the website Trivia Plaza (www.triviaplaza.com) 

as an alternative primary task while the vehicle was 
under automated control during both drives. Trivia 
Plaza is a website that offers numerous sets of 
questions in nine major categories (see Figure 3). 
Within each category, there are many subcategories 
(e.g., subcategories of “Movie” include various time 
periods, genres, production companies, etc.). The 
intent was to provide a task that all participants could 
be equally engaged with, by finding topics of greatest 
interest to them. 
 
An iPad was given to each participant for the 
duration of the drives to allow access to the website. 
In order to encourage participants to be actively 
involved in trivia, they were told to pick any topic(s) 
that they were interested in and that any participant 
who reached a cumulative score of 100 or higher 
would receive a bonus compensation of $15. 
Participants could play multiple times to reach the 
given score. In reality, all subjects received the $15 
bonus. 
 

 

Figure 3.  Example screen from Trivia Plaza 
(www.triviaplaza.com). 
 
Driver Comfort 
The amount of comfort an operator had in the 
automation during their drives was probed at semi-
regular intervals using an online survey that appeared 
on a display located in front of the cab’s center 
console. The single question asked the operator to 
rate his or her level of comfort at that moment on a 
scale of 1 (Very Comfortable) to 7 (Very 
Uncomfortable). The wording of comfort was 
selected as an overall approximation of the more 
complex concept of trust and was thought to estimate 
the participants’ nascent level of trust in a system that 
was new to them. 
 
Two such comfort probe surveys were administered 
in the practice drive. There were eight additional 
surveys in each main drive, for a total of 18 comfort 
measurements. They were spaced in between events, 
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and nothing related to any event was happening at the 
time the surveys were administered. Sometimes the 
survey occurred after one of the four main events, but 
sometimes it occurred after the ‘filler’ event during 
which a lead vehicle slowed momentarily. 
 
Dependent Measures 
Data was collected from three main sources. 
Simulator data files contained many variables, 
including driver inputs and vehicle signals. Eye 
tracker data was recorded to log files from the 
FaceLab system. Lastly, post-drive surveys were 
administered to collect additional data on comfort 
and attitudes towards automated vehicles, and a 
comfort probe survey was given at semi-regular 
intervals in the cab during the study drives. The 
simulator and eye tracker data were processed using a 
data reduction script in Matlab to obtain several 
dependent measures used in the analysis. 
 
Two types of measures were calculated. The first set 
was calculated once per event and is listed in Table 2. 
These measures included response times, eye gaze, 
and information about the use of automation (see 
Table 2). The percent road center (PRC) gaze [20] 
measured the percentage of time that the driver’s 
gaze was directed at the front scene, computed in a 
running 17-second window [21]. 
 

Table 2. Dependent measures, calculated once 
per event. 

Measure Description 

PctAuto Percentage of event time 
spent in automated mode 

TakeOverRT Response time to take over 
from automation after 
warning 

GiveBackRT Response time to give back 
control to automation after 
cue 

MeanPrc17Auto Average PRC gaze while in 
automated mode 

MedPrc17Auto Median PRC gaze while in 
automated mode 

MeanPrc17Manual Average PRC gaze while in 
manual mode 

MedPrc17Manual Median PRC gaze while in 
manual mode 

DurationManual The time that was spent in 
manual mode 

Manual Did the driver take back 
control from the automation? 

 
A second type of dependent measure was recorded at 
regular intervals either after the beginning of manual 

driving mode, or after the end of manual driving 
mode in the event. A fixed interval spacing of five 
seconds was used, and up to 12 segments, or one 
minute, were computed. These measures created a 
type of longitudinal, or time sequence, data that could 
be analyzed for trends. The approach was adapted 
from the methodology used by Merat el al. [11]. The 
longitudinal dependent measures are summarized in 
Table 3. 
 

Table 3. Longitudinal dependent measures, 
calculated in five second segments. 

Measure Description 

MinSpeed The minimum speed in each manual 
segment (mph) 

MeanSpeed The average speed in each manual 
segment (mph) 

SR The steering reversal rate in each 
manual segment, calculated in a 15-
second running window (rev/sec) 

SDLP Average value of standard deviation 
of lane position in each manual 
segment, calculated in a 15-second 
running window (ft) 

HFSteer High-frequency steering content in 
each manual segment 

PRC Percent road center gaze in each 
manual segment, calculated in a 17-
second running window (%) 

PRCpost Percent road center gaze in each 
segment after return to automated 
mode, calculated in a 17-second 
running window (%) 

 
The steering reversals and high-frequency steering 
(HFSteer) measures were also adapted from the 
methodology in [11]. Steering reversals count the 
number of one-degree reversals in a time period. The 
steering reversal rate per second was then calculated 
by dividing by the number of seconds in the segment. 
The HFSteer measure is based on a high-frequency 
control of steering computation that is defined as the 
ratio between the power of a high-frequency band of 
steering activity to the power of a lower-frequency 
band [22], [23]. 
 
RESULTS 
 
Results on Operator Trust 
     How much did operators trust the automation?  
The R statistical software language [24] was used to 
analyze the simulator and eye tracker measures. Box 
Cox transformations were applied to the dependent 
measure, where appropriate, to optimize the 
normality of the residual error. Normality was tested 
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by observing the Q-Q plot of the residuals as well as 
by running a Shapiro-Wilk test to see if the null 
hypothesis of normality should be rejected. 
Additionally, a cluster analysis was used to identify 
three distinct profiles of longitudinal comfort that 
were observed among the participants.  
 
The log of the in-cab comfort score was used as the 
main trust measure. All 18 measurements in a drive 
constituted a longitudinal comfort profile that 
evolved in ways unique to each individual. Each 
participant’s longitudinal comfort profile is plotted 
individually in Figure 4. The scenario is coded both 
by color and by marker shape. No significant effect 
of age, gender, or order of the drives was found on 
the development of comfort, tested using growth 
curve models with linear piecewise time segments. 
 

 
Figure 4.  Longitudinal comfort (log of 18 
comfort responses) for all participants across 
three study drives. Drive A used more capable 
automation, while drive B used less capable. 
 
A hierarchical clustering analysis was conducted 
using the random intercept and two random slopes 
from the growth curve model. Three clusters were 
selected from the analysis and participants were 
assigned to one of the three. Figure 5 shows the 
longitudinal comfort profiles once again, this time 
with 95% confidence intervals from the random 
effects overlaid on each plot. Additionally, the cluster 
for each participant is color-coded in the figure. 
 
The three clusters may be easily described on 
inspection of Figure 5. The participants in cluster one 
gradually increased in comfort (the log of the 
response is inversely proportional to comfort) over 
the course of the practice drive and two main drives. 
Participants in cluster two started with about the level 
of comfort that they maintained throughout their 
three drives. Finally, participants in cluster three 
started with less comfort, but became more 

comfortable over a fixed amount of time and then 
leveled off for the remainder of the drives. Participant 
13 may be an outlier if the first large comfort 
response was an aberration. Participant 4 was unusual 
in that the responses indicated a loss of comfort near 
the end of the first drive (identified as Drive B, or the 
less-capable automation system, from Figure 4). 
 

 
Figure 5.  Three comfort profile clusters. 
Ribbon overlays show 95% confidence interval 
of the random effects model fit. 
 
     How did participants rate their trust 
retrospectively? For the retrospective trust survey 
data, the restricted range and ordinal scale of the data 
associated with Likert-type survey responses required 
that care be taken in that analysis. Although there is 
significant debate over the acceptability of various 
analysis approaches and whether these data can be 
considered as interval scale and analyzed with 
ANOVA, Sullivan and Artino [25] present an 
argument that ANOVA is an appropriate technique. 
Accordingly, the SAS general linear model (GLM) 
procedure was used to conduct an ANOVA on the 
post-drive survey data. Scenario (more or less 
capable (A or B)) and order (first or second drive (1 
or 2)) were treated as within-subjects factors for each 
of four questions where participants provided 
comfort responses. 
 
The first question asked participants to indicate how 
comfortable they felt when transferring into 
automated mode. Overall, participants felt quite 
comfortable, and there were no significant effects or 
interactions involving either scenario or order (p > 
0.05). The second question asked participants how 
comfortable they felt when resuming manual control 
back from the automation. The main effect of order 
was marginally significant (p = 0.09), suggesting that 
drivers tended to be less comfortable in their first 
drive relative to their second drive. This is to be 
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expected as drivers grew more familiar with the 
automation and transferring control.  
 
The third question asked drivers how comfortable 
they felt when the automation failed and they had to 
regain control. Neither the main effect of order nor 
scenario reached significance, nor did the order by 
scenario interaction (p > 0.05). The final Likert scale 
question asked participants how comfortable they felt 
when driving in automated mode. Again, the main 
effects of order and scenario and the order by 
scenario interaction did not reach significance (p > 
0.05).  
 
These results generally suggest that the capability of 
the automation (scenario) and the order in which 
drivers experienced the different conditions had a 
limited effect on drivers’ retrospective perceptions of 
comfort in interacting with the automation. 
 
Results on Simulator Measures 
     How long to transfers of control take? Transfers 
of control from automated to manual operation have 
several phases that should be considered individually, 
though some are more difficult to study than others. 
Situational awareness, for example, is a difficult 
concept to define, much less measure, and we do not 
attempt it here, though visual attention is likely a 
good minimum bound on the time required to regain 
it. Four phases of takeover from automation are 
presented in Table 4. Note that order is not implied in 
the table, as SA could be fully regained before the 
physical takeover is initiated. 
 
Table 4. Phases of takeover from automated to 

manual mode 
Takeover Phase Dependent Measure 

Physically taking control 
by pressing the transfer 
button or the brake pedal 

Takeover response time 
from cautionary TOR 

Physically stabilizing 
control of the vehicle 
after taking control 

Longitudinal dependent 
measures for steering 
and lane keeping 

Visually attending to the 
dynamic driving task 

Longitudinal dependent 
measure for PRC gaze 
during manual mode 

Regaining full 
situational awareness 

None 

 
The physical takeover phase may be characterized by 
the drivers’ response times in returning to manual 
mode after being given a TOR. Events 1 through 4 
used cautionary TORs. The average response time 
was 4.13 seconds with a standard deviation of 1.04 
seconds (see Figure 6a). The exit event, event 5, first 

issued an information TOR, followed by a cautionary 
TOR and an imminent TOR, each lasting for 10 
seconds.  
 
Observe in Figure 6b that the distribution of response 
times for event 5 is tri-modal. Some people 
responded after the first stage TOR and some after 
the third one. One person responded after 30 seconds. 
The first group had a mean time of 7.60 seconds with 
standard deviation of 1.28 seconds. The middle, 
largest, group had a mean response time of 22.37 
seconds with standard deviation of 0.85 seconds. The 
participant in the third group responded at 31.57 
seconds. Three-way ANOVAs were run on takeover 
response time for each event using order, gender, and 
age. No significant effects of these conditions were 
found. 
 

 
(a) 

 
(b) 

Figure 6. Distribution of response time to take 
back manual control after a TOR for (a) events 
1 through 4, and (b) event 5. 
 
The third phase of manual takeovers considers the 
time required for the driver to become fully visually 
engaged in the dynamic driving task. We used the 
percent road center (PRC) gaze measure recorded 
using the eye tracker to indicate visual attention. 
Percent road center has been used not only as a 
measure of visual distraction, but also to detect 
cognitive distraction. Simply put, PRC has a normal 
range, and values that are too low or too high indicate 
a lack of proper attention. 
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After manual takeovers, PRC gaze increased as 
drivers returned their gaze to the road until achieving 
normal gaze patterns once more. The PRC gaze was 
calculated on a 17-second running window, which 
has been used for the detection of distraction [21]. 
The increasing piece of the PRC gaze trend, up until 
it peaked, was fit to a linear model, and linear 
interpolation (or extrapolation, as appropriate) was 
used to estimate the time at which the PRC would 
reach 0.7. The distribution of these times is shown in 
Figure 7. In actuality, the PRC never reached 0.7 in 
some events for some participants. Such cases caused 
the increasing trend to have a very shallow slope, 
resulting in very large estimates for the 0.7 intercept 
time. Nevertheless, the estimate is useful as a way to 
compare events and participants against one another. 
 

 
Figure 7.  Distribution of times projected for 
PRC to reach 0.7 after transfer to manual mode 
 
Transfers of control from manual to automated mode 
are simpler in that stabilization and situational 
awareness are not factors after the transfer. Rather, 
analyzing transfers to automated mode may tell us 
about the degree of trust the operator has in the 
automation. After each event, an audio/visual cue 
was given to the driver that they could once again 
transfer control to the automation. The response time 
was measured from the time this cue was issued. The 
distribution of response times for the driver to hand 
back control to the automation is shown in Figure 8. 
After removing the times larger than 20 seconds as 
outliers, the mean response time was calculated to be 
5.31 seconds with standard deviation of 3.15 seconds. 
 

 

Figure 8.  Distribution of response time to give 
back control to the automation after a reminder 
cue in events 1 through 4. 
 
After control was returned to the automation, the 
PRC gaze dropped until the driver engaged once 
more with the trivia task. The PRC gaze trend was fit 
to a linear model, and the time was estimated at 
which the PRC would reach 0.1. A distribution of 
these times is shown in Figure 9.  
 

 

Figure 9.  Distribution of times for PRC to 
reach 0.1 after transfer to automated model. 
 
     Were there performance decrements after 
manual takeovers? The second phase of manual 
takeover includes the time required to stabilize 
physical control of the vehicle. The high-frequency 
control of steering, captured in the HFSteer measure, 
is thought to be sensitive to distraction. A larger 
amount of variance was observed in the HFSteer 
measure in the first six time segments, while less 
variance was observed in the last six time segments. 
This is shown in Figure 10. 
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Figure 10. Standard error of HFSteer measure 
across all participants and all events for each 
time segment after a manual takeover 
 
CONCLUSIONS 
 
Twenty participants took part in an automated driving 
study using the NADS-1 motion base driving 
simulator. The automation was described generally as 
SAE Level 3 (conditional automation), however it 
was implemented as SAE Level 4 with a fallback 
mode to mitigate the risk that an automated vehicle 
would actually collide with a lead vehicle or drive 
through a work zone. Those negative outcomes did 
not happen, and the fallback mode was not needed in 
any of the events. 
 
Comfort was measured using an online probe survey 
that was administered twice during the practice drive 
and eight times during each main drive. Also, a post-
drive survey was administered after each main drive; 
it asked the participants to retrospectively consider 
their comfort with the automation. We surmised that 
asking about comfort would be an effective way to 
capture the nascent trust of an operator just becoming 
familiar with an automation system. Future work 
could delve deeper into multiple facets of trust, 
including predictability/performance, 
dependability/reliance, faith, and collaboration. 
 
A cluster analysis revealed three distinct longitudinal 
comfort profiles from the probe surveys. One cluster 
started with a high level of comfort and stayed that 
way. Another started with a lower level of comfort, 
but it gradually increased after a few surveys and 
then stayed level. A third cluster started with low 
comfort and gradually increased over the course of 
the practice and two main drives. Apart from single 
instances of reduced comfort, only participant 4 
showed a temporary trend of decreasing comfort. We 
could not associate the clustering with age, gender, or 
order. It may be that it is associated with some latent 
variable such as sensation seeking or a personality 

trait. The longitudinal comfort profiles support the 
notion that trust can be modeled as a function of time, 
especially in the sense that instantaneous levels of 
trust depend on their previously measured levels [31]. 
 
The physical response times to TORs and automation 
reminders were both under 10 seconds (4.13 sec +- 
1.04 sec and 5.31 sec +- 3.15 sec, respectively). 
Visual attention to the driving task was measured 
using the percent road center gaze, calculated over a 
17-second running window. There were many 
instances in which it took a driver more than 20 
seconds to return to normal forward gaze after a 
transfer. 
 
Consideration of the response times for physical 
takeovers, stabilization, and visual attention leads to 
concern for the driver’s safety after taking control. 
Drivers are capable of physically taking over control 
in less than five seconds. However, PRC gaze 
showed that it could take 20 seconds or more to 
return their full attention to the roadway. 
Additionally, the variation in high-frequency steering 
offers evidence that drivers do not return to their 
normal driving control for up to 30 seconds. These 
results imply there could be a 15- to 25-second gap 
during which the driver may be vulnerable to missing 
a response to a safety-critical event at an inopportune 
moment. 
 
The main limitations of this study were that it used a 
fairly small sample size (20 participants), and that it 
was not able to fully explore the different dimensions 
of trust. Future research should address both of those 
limitations. Additionally, the inclusion of safety-
critical events and latent hazards, would allow a 
better judgement of whether the driver has regained 
SA and whether the takeover times observed have an 
adverse effect on safety. We modeled our driver-
vehicle interface (DVI) largely on previous research. 
However, there is still much that could be done to test 
different modalities and timing for DVI design. 
Finally, we conjecture that the best DVI would be 
one that is capable of monitoring the driver and 
adapting elements of the DVI, transfers of control, 
and other aspects of the automation to the perceived 
state of the operator. 
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