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ABSTRACT 

 

Analyzing road-test data is important for developing automated vehicles. L3Pilot is a European pilot project on 

level 3 automation, including 34 partners among manufacturers, suppliers and research institutions. Targeting 

around 100 cars and 1000 test subjects, the project will generate large amounts of data. We present a data format, 

allowing efficient data collection, handling and analysis by multiple organizations.  

A project of the scope of L3Pilot involves various challenges. Data come from a multitude of heterogeneous 

sources and are processed by a variety of tools. Recorded data span all data types generated in various vehicular 

sensors/systems and are enriched with external data sources. Videos supplement time-series data as external files. 

Derived measures and performance indicators – required to answer research questions about effectiveness of 

automated driving – are processed by analysis partners and included for each test session.  

As a file format, we chose HDF5, which offers a data model and software libraries for storing and managing data. 

HDF5 is designed for flexible and efficient I/O and for high volume and complex data. The usage of different 

computing environments for specific tasks is facilitated by the portability that comes with the format. Portability 

is also important for exploiting the rising potential within artificial intelligence (e.g. automatic scene detection 

and video annotation).  

Based on lessons learned from past field tests, we defined a general frame for the common data format that is 

aligned with the data processing steps of FESTA “V” evaluation methodology. The definitions include 

representation of the source signals and a hierarchical structure for including multiple datasets that are gradually 

supplemented (post-processed or annotated) during the various analysis steps. By using the HDF5 format, analysis 

partners have the freedom to exploit their familiar tools: MATLAB, Java, Python, R, etc. First comparisons 

between time-series data in previous projects (e.g. AdaptIVe) and the proposed data format show a reduction in 

storage size of around 80 %, without losses in performance. Much of that is due to efficient internal compression 

and structuring of data. Considering the amount of objective data involved in automated driving, this leads to a 

great benefit, in terms of usability. 

This paper presents a compact, portable, and extensible format aimed at handling extremely large amounts of field 

test data collected in automated driving pilots. As a harmonized format between tens of organizations performing 

tests in the L3Pilot project, the proposed format has the potential to promote data sharing as well as development 

of common tools and gain popularity for use in other projects. The format is designed to allow efficient storing of 

data and its iterative processing with analysis and evaluation tools. The format also considers the requirements of 

AI tools supporting neural network training and use. 
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INTRODUCTION 

 

Automated Driving (AD) technology has matured to a level motivating large-scale road tests which can answer 

key open questions before market introduction. These newly-attained levels of maturity will ensure an appropriate 

assessment of the impact of AD. Of interest is what is happening both inside and outside of the vehicles. Also 

ensuring vehicle safety is of utmost importance as well as evaluating societal impacts. As a further point, the 

evaluation of emerging business models is of interest. 

A point that has proven to be the crux in many previous projects is the data exchange between partners, as well as 

the evaluation. This led to devising a data format common to the whole project, thereby easing the exchange of 

data and the further development of evaluation processes and tools based on the data. 

First, we will present the organization of data in previous projects and present the current project, L3Pilot [1]. 

After that, we will show how the process for deriving the requirements for the data format came together, followed 

by a few formats shortlisted for storage of the data. We will then describe the format itself and afterwards discuss 

it and its limitations. 

 

PREVIOUS PROJECTS AND EFFORTS 

 

Over the years, numerous projects have paved the way for advanced driver assistance systems (ADAS) and AD. 

Each of those projects had a slightly different approach to data acquisition, handling and evaluation. This section 

shortly picks out a few of these projects and gives some details on the used methods. 

In 2008, a big European project was started with euroFOT [2]. It identified and coordinated an in-the-field testing 

of new intelligent vehicle systems with the potential for improving the quality of European road traffic. During 

the project, the effectiveness of various lateral and longitudinal control functions and active safety functions on 

public roads was assessed. Data collection and analysis was organized from test sites. Each test site was using 

similar (Matlab based), but still with differences, data formats and individual analysis tools [3]. 

With AdaptIVe [4] in 2014, the focus moved from ADAS to AD. In the three and a half years of the project, AD 

functions for scenarios such as parking and motorway driving were developed and demonstrated. Raw data for 

the evaluation was delivered by the vehicle owners. At the evaluation partner, the needed signals (cf. [5], Annex 

3) were extracted and converted to an internal evaluation format, a mixture of CSV and MATLAB. 

From past EU Field Operational Test (FOT) projects, at least TeleFOT [6] and DRIVE C2X [7] used fixed formats 

when gathering data from several test sites to a central data storage. These projects assessed, in respective order, 

in-vehicle navigation systems and short-range vehicle communication prototypes. 

In 2017, the L3Pilot project was kicked off. L3Pilot will test automated driving functions (ADFs) in 100 cars with 

1,000 test subjects across 10 different countries in Europe. The tested functions will be mainly of SAE automation 

level 3, some of them of level 4 [8]. Together, European automotive industry, suppliers and researchers will pave 

the way for large-scale field operational tests on public roads creating a harmonized Europe-wide testing 

environment. The overall objective of L3Pilot is to test and study the viability of AD as a safe and efficient means 

of transportation, explore and promote new service concepts to provide inclusive mobility.  

 

SIGNAL DERIVATION / METHOD / REQUIREMENTS 

 

L3Pilot follows the FESTA V-process methodology [9] of setting up and implementing tests with the four main 

pillars and adapting the methodology to suit L3Pilot needs (cf. Figure 1). The four pillars in L3Pilot are: Prepare, 

Drive, Evaluate and address legal and cyber-security aspects.  

This paper focuses on the Prepare pillar with additional focus on the early phase of the Evaluate pillar. The Drive 

pillar is handled by the vehicle owners. As can be seen in the figure, the first step in L3Pilot is the definition of 

automation functions and use cases, with a major attention on motorways. In a further step, the research questions 

for this project are derived from the specified use cases. Accompanying the research questions are various 

hypotheses that this project will investigate. In order to do this, different data are needed. One part will be 

subjective data, i.e. data that originate from questionnaires and user evaluation. Particularly interesting from a 

data processing point of view, and therefore for a data format, are the data recorded in the vehicles. To specify 

what data to record, performance indicators and derived measures are defined, which are used to answer the 

research questions and confirm the hypotheses. Derived measures, in this context, are quantities that are directly 

calculated from source signal time-series data. These can be vehicular signals or information about the 

environment delivered by car sensors. Performance indicators, on the other hand, are no longer time-series data. 

They take different forms depending on the indicators. They can be single values giving a certain value or the 

average in a recording or in a specific scenario. However, they can also be histograms over some value in multiple 

occurrences of a driving scenario. The set of signals needed for the calculation of these measures results in a list 

of required signals, that are to be recorded during each session in the pilot vehicles. The full process following the 

FESTA-V up to the data can be found in [10]. 
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Figure 1. The FESTA implementation Plan adapted to L3Pilot 

 

With the needed signals defined, the focus shifts towards the actual data. As stated before, different data are 

aggregated during the project. The three main sources are subjective data, objective data and video feeds. The 

data important for the L3Pilot Common Data Format (CDF) are the objective data. These include original vehicle 

signals and derived measures calculated from the source signals. In a project of the size of L3Pilot, there is not 

one platform running all the pilot vehicles and systems. One can think of platforms such as ADTF [11] or ROS 

[12] to just name two. Therefore, a simple export of the data collected in the car is not a viable option, since the 

export files of the different platforms are seldom compatible.  

After the successful conversion, the Evaluate pillar starts with the data processing at the evaluation partner. 

Complementing the vehicle data will be data that originate from other, external, sources such as weather or map 

providers. Another factor is that multiple partners will be doing different analysis on the data, using different 

tools. One of the main programs used for post-processing and data analysis by the partners in this field is 

MATLAB. Additionally, in the previous years, Machine Learning has proven to be an important factor for the 

automatic detection of scenarios and video annotation. Therefore, a support of Python by the data format is of 

utmost importance. Considering statistical analysis of factors, some partners will also rely on R, SPSS or others. 

This leads to a requirement for a wide support of tools, platforms and programming languages.  

Considering the aim of 1000 drivers in 100 cars, the amount of data recorded and transferred between vehicle 

owners and evaluation partners in terms of actual file sizes is another factor that should not be neglected. This 

leads to another criterion, the portability of files and results. For portability, memory efficiency is of course 

important. 

Considering all these requirements, the common data format task force decided that a single file-based data format 

should be used in L3Pilot, to support an easy exchange of data between different partners. In order to reduce the 

amount of data that is transferred, compression was noted as another key feature to improve the process. 

Within the L3Pilot project, it is agreed upon, that vehicle owners convert their datasets into the presented CDF. 

This enables the evaluation partners to use common tools to analyze the data, no matter which vehicle owner they 

work with. 

 

CONSIDERED FILE FORMATS 

 

As stated in the previous section, the decision upon a file-based format was taken quite early in the project. 

Therefore, going forward in the decision process, only file-based formats were considered. Solutions for big data 

storage were not further considered, although they can play an important role in the data management within an 

institution. As a first step towards the CDF, various file formats were evaluated and discussed. In various previous 

projects, that are partially listed in the section above, many different file formats were used. All of them have their 

own advantages and disadvantages. These differ strongly depending on the intended use of the formats. During 

the decision process for the CDF, many of them were evaluated and the pros and cons were compared. The 
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following formats were the ones taken into closer account during the decision process, as the task force already 

had experience with them, or they were deemed as promising. 

A format that is commonly used among researchers in this field is the MATLAB file format [13]. The newest 

iteration is v7.3 that was introduced with MATLAB R2006b, however, the default version for files is v7. In it, 

data is stored in a binary format. It is a proprietary format, that is supported by MATLAB across all platforms that 

MATLAB supports. All datatypes included in MATLAB are supported and can be loaded and saved, while also 

supporting compression of data. One limitation is its strong link to MATLAB, however, for many research projects 

this was not an issue, since MATLAB is commonly used. This offers the opportunity to re-use existing tools from 

other or previous projects. The MATLAB file format was used in euroFOT [3] and internally during the evaluation 

in AdaptIVe [5].  

A commonly used file format for exchange of numerical data is Comma-Separated Values (CSV). In it, values 

are simply stored as text, separated by commas (or any other type of delimiter), thus the name. Time-series are 

represented by new lines for each element. It is easy to use, doesn’t need any updates and can be read and written 

by almost any program. However, there are also drawbacks to this format. CSV doesn’t support the use of 

metadata. Therefore, value formats and e.g. minimum and maximum values of a column must be defined in a 

separate supporting document. One of the main advantages of CSV, the textual basis, is also one of its 

disadvantages, because it doesn’t directly provide any compression and therefore takes up a lot of memory for 

long recordings. CSV was partially used for data transfers during the AdaptIVe project. 

The Hierarchical Data Format (HDF) [14] exists in different versions. The current version is HDF5 revision 1.10.4 

(as of January 2019). HDF was developed with portability in mind. It is supported by various languages such as 

C/C++, Fortran, Java, MATLAB and Python. Due to its support by a wide selection of programming languages, 

it can be used in the various available operating systems. It can therefore be easily implemented into different 

scripts and programs. HDF supports the storing of a wide array of datatypes including doubles, integers and 

strings. Additional datatypes can easily be added. To support portability, HDF has features for data compression. 

Different compression algorithms can be applied in order to save storage space. Metadata is stored in attributes in 

HDF files. This supports portability and simplifies the management of many files. Starting from version 7.3, the 

MATLAB file standard is based upon HDF5, thereby becoming compatible with HDF5 tools. As a disadvantage, 

for readability, HDF5 uses a binary format. An easy peek into the data without using the access libraries is 

therefore not possible. However, several data viewers exist. Editing the data can be another issue, depending on 

the viewers’ capabilities. Another disadvantage is, that there is one inner core module on which almost all 

implementations of HDF5 rely upon. An error in this module would be devastating. 

During L3Pilot, the main drawback of HDF5 was the somewhat limited documentation of programming examples. 

Another shortcoming and even a related bug were later found in Java libraries, as the main data viewer provided 

by HDF Group, HDFView, could not, at that time, display an array of compound datatypes used in the L3Pilot 

CDF. This was fixed by the HDF Group upon a report by the team.  

 

L3PILOT COMMON DATA FORMAT 

 

Considering the previously stated requirements, a file format was selected. The selection came upon HDF5. This 

allows us to define different datasets for the needed signals.  

Since HDF5 supports a wide array of programming languages, the vehicle owners can use their preferred language 

and platform to convert their data recorded in their proprietary format. On the evaluation side, the corresponding 

partner should be able to use existing or preferred tools with small modifications. This allows for an efficient use 

of resources, as more time can be committed to developing and implementing new features.  

HDF5 offers two ways of organizing data: datasets and groups [15]. Groups can contain zero or more HDF5 

objects and can be accessed together using the group name. They can be hierarchically organized and have circular 

references. Datasets are where the data is stored. They are a collection of data elements, or raw data, and metadata 

that stores a description of the data elements, data layout, and all other information necessary to read, write and 

interpret the stored data. These data values can be of various datatypes. Already defined are datatypes such as 

double, integer, etc. However, the library also offers the opportunity to define new datatypes, if needed. Included 

in the datasets as well are the metadata, which include attributes. These attributes can be used to describe the 

contained data, thus allowing a verbal description of the data and, e.g., providing the unit of a logged signal. These 

attributes are independent and can be read and written without loading the complete HDF file. Datasets can be on 

the root level or belong to one or more groups. One advantage of datasets and groups is that each of them can be 

loaded individually without loading the complete file. 

Derived through various iterations from the use cases and research questions, various logged signals are available 

on vehicle owner side. In order to allow for an efficient and quick access to the data, the signals are coarsely 

grouped according to their origin. For this purpose, datasets and groups are used by the CDF. All vehicle signals 

are organized in datasets on the top level of the file (“/”) (cf. Table 1). The “egoVehicle” dataset contains all 

signals originating directly from the ego vehicle itself. This would be signals such as the ABS status or the speed 
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of the vehicle. All information about the lane markings, e.g. the distance to the lane markings and their type, is 

contained in the “laneLines” dataset. Dynamic objects and their properties such as speed and distance are saved 

in the “objects” dataset. Information from a global navigation satellite system (GNSS), e.g. GPS or Galileo, is 

stored in the “positioning” dataset. The previously discussed derived measures and performance indicators are 

calculated at the evaluation partners, and then stored in the “derivedMeasures” and “performanceIndicators” 

datasets. 

In order to gain more information about the recorded trips, external data can be useful. Two important external 

data sources that were identified for the L3Pilot project are weather and map information. Weather information 

can be provided by various weather services and contains information about temperature, precipitation and cloud 

coverage. Map data provides information about the number of lanes, speed limits or intersections. These data are 

saved in the datasets “map” and “weather”. These are located hierarchically under the “/externalData” group. 

Some data cannot, or only with major difficulties, be derived from vehicle signals. One of these signals is, for 

example the secondary task performed by the driver during different situations. These kinds of signals are added 

by annotations through human experts, or students supervised by experts, watching the time-synced video feed of 

the recording. These annotations are normally added at the evaluation partner and not supplied by the vehicle 

owner. Annotations are located hierarchically under the “/annotations” group. For each annotation a subgroup is 

added with the name of the annotation. In this example it is “/sceondaryTask”. It includes two datasets 

“comments” and “enum”. In “comments” all comments that are additionally made by the annotator are stored, i.e. 

if there is an extraordinary reason for this annotation. The dataset “enum” contains the annotation as numerical 

value so that it can easily be reused in subsequent scripts and calculations. For the example of the secondary task, 

this would contain the annotated secondary task masked as an enum and the file time referencing it to the 

recording. Groups are used here, in order to have the possibility to flexibly extend the annotations. 

 

Table 1. 

All datasets according to the L3Pilot Common Data Format and the associated groups. 

Group Dataset Description 

/ egoVehicle Signals directly concerning the ego vehicle 

 laneLines Information on the lane markings 

 objects A list of (dynamic) objects 

 positioning Information from the positioning system (local or 

GNSS) 

 derivedMeasures Contains all the derived measures 

 performanceIndicators Contains all the performance indicators 

/externalData weather Contains information about the weather 

 map Contains map information 

/annotation - Group containing various annotations 

/annotation/secondaryTask comments Comments on the annotation by the annotator 

 enum The annotation values 

 

Considering the memory usage and a memory efficient storage of the recorded data, the datatypes of all signals 

are carefully selected. For this purpose, the desired and expected precision of all signals is reviewed. Many signals 

such as vehicle speeds or accelerations come in high precisions, with many digits to the right of the decimal point. 

For these signals, the “double” datatype is used, which allows for a high precision. Other signals such as the ID 

of an object, the speed limit or the number of lanes are not needed with high precision. Therefore, these values 

are saved as integers. Another common signal in recorded data is the status of a system. In general, it takes very 

few distinct values that are known beforehand. These status signals are saved as “enums” in the CDF. HDF5 

allows the definition of arbitrary enums. For the CDF, they are based upon “uint8” and take few distinct values. 

Table 2 summarizes the commonly used datatypes. 

 

Table 2. 

Different used datatypes in the Common Data Format, their sizes and examples 

Datatype Size in byte Exemplary value Exemplary N/A value 

Double 8 3.14159265359… NaN 

int64 8 1545572564000 -1 

int32 4 42 -1 

enum (uint8) 1 ON (1) N/A (-1) 
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In a project of the size of L3Pilot and with the wide variety of vehicle owners and sensor setups, not all the signals 

will always be available or will fit the same format. For the CDF this means, that some signals will not be available 

in some recordings. For missing values, “N/A” values are defined, i.e. values that are used when the signal is not 

provided. This makes it easier for programs and scripts to run on the data anyway. For floating point numbers, 

“not a numer” (NaN) [16] is used. Since NaN is not defined for integer types, values that are not expected to 

appear are used here, e.g. “-1”. 

All signals in the CDF are synchronized between the datasets. In order to achieve this, a frequency of 10 Hz was 

selected for the project. For reference, each dataset contains two different time signals. The first is the “FileTime” 

which simply counts up in discrete 10 Hz steps from the beginning of the recording. This can be used for easy 

reference in the file itself. The second time signal is the “posix” time in milliseconds, named “UTCTime” in the 

file. This allows references to external data sources such as weather or traffic services. The posix time is the time 

in seconds, milliseconds or nanoseconds (depending on the application) since 00:00:00 on 1 January 1970 in UTC. 

It doesn’t include any leap seconds and therefore differs from the atomic time used in GNSS systems by currently 

37 seconds (as of January 2019) [17]. 

Since not all signals are always recorded with the requested frequency of 10 Hz, interpolation methods are defined 

per signal. For continuously available signals, a simple linear interpolation is defined for most cases. However, 

since a linear interpolation is not applicable for status signals with few distinct values, a zero-order-hold (ZOH) 

interpolation is defined for these signals. Thereby each signal is held for one sample interval and then changes. In 

addition, a maximum time of loss is defined per signal. This is to prevent unreasonable behavior in signals when 

data loss was too long. For high precision variables this might be very close to zero seconds, for other signals (e.g. 

GNSS) this could be up to 10 seconds.  

Another step towards memory efficient storage is the utilization of the HDF5 built-in compression. One common 

algorithm here is the “DEFLATE” compression [18]. This algorithm is not restricted by patents. Many different 

implementations for almost all common programing languages are available. The algorithm works especially well 

on data that does not change often. In that case, it will only save the value for the first occurrence and save the 

next value only if it changes. This saves a lot of memory especially for Boolean values and other mostly static 

variables.  

In order to support faster I/O and memory efficient computing, HDF has a feature called chunking. Here, data is 

not saved in one continuous block in the file, but in so called chunks. These chunks are specified when creating 

the file according to the data that is to be stored. When reading the file, only one chunk at a time is loaded into 

the memory. This is especially useful, when handling large amounts of data. For the implementations in the 

L3Pilot project, the chunk size is selected in a way to get chunks of about 1 MB. Chunks are applied to the 

respective datasets. Since the size of a single timestep is known due to the mandated format and signals, the chunk 

size can be set accordingly.  

 

DISCUSSION 

 

For a preliminary assessment, memory consumption was measured for data coming from 32 hours of motorway 

data recorded in a previous project. The mean duration of one trip from this project is roughly 52 minutes. For 

that purpose, the raw data size was calculated from the known sizes of the datatypes and the length of the 

recordings. This is given in Table 3 as “Raw data, calculated” and taken as the reference for all other file sizes. 

This would lead to an average data file size of 84.54 MB for a recording length of 52 minutes. Using HDF5 for 

storing the data and activating the compression. the average reduction in file size is around 89 %. This results in 

an average file size of 9.63 MB. In terms of absolute memory, we can now save the recordings with only around 

395 MB instead of the ~3.5 GB that would have been needed without the compression. 

  

Table 3. 

Comparison of file sizes for a selection of different file formats. 

Format Mean file size Relative 

Raw data, calculated 84.54 MB 100 % 

HDF5, compression, DEFLATE 9.63 MB 11.17 % 

csv 54.91 MB 64.94 % 

mat file, v7 8.86 MB 10.48 % 

mat file, v7.3 9.29 MB 10.98 % 

 

For benchmarking, a few comparisons to other formats are done. The first one is CSV. All data that is written to 

the HDF5 files is taken and written to a csv file using the MATLAB function dlmwrite. This simply writes a 

matrix to a csv file. This results in an average file size of 54.91 MB. Compared to the raw calculated data size, 

this is only ~65 %, which can be explained by the fact, that data is written as ASCII characters, which only uses 
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one byte per character. Even though some numbers take up multiple characters, the overall number is still smaller 

than having double datatypes with eight bytes.  

As another comparison, the MATALB mat file format is considered. Here the commonly used version 7 is 

compared as well as the newer version 7.3 which is however not enabled by default. v7.3 is built upon HDF5 and 

can therefore also be read using HDF5 tools. As can be seen from the table, v7 offers the best compression in the 

sense of the smallest average file size. With v7.3, the file size slightly increases which MATLAB also notes in its 

documentation, which can happen due to overhead in the description of the file contents. 

Overall it can be seen, that the proposed format offers a good performance in terms of memory. It does not quite 

reach the memory efficiency of the long-matured MATLAB mat file format; however, it is not dependent on a 

proprietary program and can be accessed using multiple languages and programs.  

The binary nature of the format, which is one of its advantages, because it allows compression, is also one of its 

disadvantages. The binary format leads to the restriction that the data can only be accessed using the appropriate 

tools and programming APIs. This also hides the structure of the data from peeks and from an easy overview of 

contained signals without using additional tools. This is however not seen as a drawback in the L3Pilot project, 

since the structure of the data is known beforehand by all partners. 

 

 

CONCLUSIONS 

 

In this paper we present the CDF approach we decided to implement to manage the heterogeneous data sources 

in the L3Pilot project. The intention of the format is to make the process of data exchange and evaluation more 

flexible and efficient. The paper showed the methodology used to define the signals needed for the evaluation in 

the project and presented the considerations that went into the decisions on the file format. 

A preliminary test showed that the L3Pilot CDF using HDF5 is more efficient than some previously used formats, 

such as csv. On the other hand, it performs almost as well in terms of memory efficiency as the MATLAB 

proprietary format, while being independent of the software used. The portability is already by now exemplified 

by various tools built using the format but in different environments: Windows or Linux, and using Python, R or 

Matlab.  

In the next months, the format will be extensively used and tested in the piloting phase of the L3Pilot project and 

will constantly evolve and mature, leading to a proven format that could be applied to many other projects of 

similar scale and type. Various analysis tools will be developed and adapted to support the format. 
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