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ABSTRACT 
The objective of this technical paper is to present a method that characterizes autonomous vehicle (AV) safety 
performance through the application of risk-based validation that leverages existing crash incidence and severity 
data, physics based model and simulation, and U.S. Federal Motor Vehicle Safety Standard (FMVSS) benchmark 
metrics. The output of the proposed risk-based methodology is a framework that organizes the number and type of 
physical tests and model/simulation runs necessary to provide meaningful evidence of AV safety performance 
statistically equivalent to human-driven non-exempt motor vehicles.  

INTRODUCTION 
The lure of AVs promises elimination of vehicle crashes, injuries and fatalities. For consumers, passengers, and 
other road users to embrace AV technology, AVs must perform safely and reliably. A formidable challenge is 
measuring and quantifying the levels of safety offered by AVs. The debate of how safe is safe enough for AVs has 
been structured around a mindset of billions of miles traveled. 

Common sense dictates the starting benchmark is the current level of safety performance; but how best is this 
measured? Traditionally, mechanical and physical safety have been measured in terms of compliance with 
government safety standards. AVs venture beyond this template in that the vehicles are loaded with complex sensor 
technologies and controlled by software. This paper proposes application of a risk-based methodology that leverages 
existing knowledge of vehicle performance characteristics and crash problem data with safety metrics to build a 
framework that compares an overall safety level between nonexempt vehicles and AVs.  

Foundational Concepts 
Defining AV safety metrics that are recognized and accepted industry wide by all stakeholders is an important first 
step. Four foundational concepts are in play: AVs must provide an overall safety level at least equal to the overall 
safety level of nonexempt motor vehicles; the Haddon Matrix, which is the most commonly used paradigm in the 
injury prevention field; all motor vehicles, including AVs, present as a system of systems; and safety is not 
reliability. 

When determining if a vehicle presents an unreasonable risk to safety, probability of failure, consequence of failure, 
occurrence and severity of injury are the primary factors to consider. In a probabilistic risk assessment, there is a 
close relationship between safety and reliability. Yet, safety cannot generally be achieved through component or 
system reliability alone. The Federal Highway Administration (FHWA) version of the Haddon Matrix [3] illustrates 
the relationship between four factors of injury (human, vehicle/equipment, physical environment, and 
socioeconomic) and the phase of injury (pre-crash, crash, and post-crash). 

If we consider the vehicle as a system of systems, one system would be the ‘driver,’ either in human form or in 
digital technology form. Vehicle systems such as powertrain, steering, braking, suspension, tires, fuel, occupant 
protection, and exterior lighting exist on all vehicles, whether AV or human driven. The primary differences 
between AVs and nonexempt vehicles will likely emerge in the driver system, in visibility and glazing systems, and 
interior human-machine interface (HMI) systems. 

A Safety Network can be defined as shown in Equation 1. ݂ܵܽ݁ݕݐ	݇ݎ݋ݓݐ݁ܰ = ݐ݊݁݉݊݋ݎ݅ݒ݊ܧ + ܸ݁ℎ݈݅ܿ݁ + ݎ݁ݒ݅ݎܦ +   (Equation 1)      ݏ݊ݓ݋ܷ݊݇݊



Last Name Main Author  2 
 

 

Reliability Concepts 
Reliability is considered the absence of failures, and is predicated on how failure is defined. In the context of motor 
vehicle safety, we can describe a failure rate as both the crash rate and a function of system performance. Adopting 
the Advanced Product Quality Planning (APQP) and Control Plan manual definitions for reliability and confidence 
level supports analysis using key risk metrics. Reliability is defined as the probability that an item (i.e., vehicle) will 
continue to function at customer (i.e., roadway user) expectation levels at a measurement point, under specified 
environmental and duty cycle conditions. Confidence level refers to the percentage of all possible samples that can 
be expected to include the true population parameter. Additional reliability concepts include selecting an appropriate 
reliability distribution, sufficient sample size, and consideration of non-critical failures in the reliability analysis. 

Several reliability distributions [7] appear to mirror the crash problem data, such as the binomial distribution, the 
exponential distribution, the Poisson distribution, and the Pareto distribution. Additionally, the bathtub distribution 
holds true for AVs in that sensor and camera initialization increases crash risk at the beginning of vehicle 
deployment. If certain crash avoidance data is collected from AVs, the normal and logistic continuous distributions 
offer the possibility to include the rate of crash events avoided, plotted as negative severity values. For any 
reliability distribution, key parameters (e.g., shape, scale, location) need to be confirmed. The distribution most 
appropriate for AVs may depend on the sample. In this paper, the sample was organized by vehicle classification, 
and the binomial distribution (with the assumption of replacement) was applied to count the number of successes 
(i.e., no crash) in a number of independent trials (i.e., VMT); if a crash occurs, then severity outcome is measured as 
no damage, property damage, injury, or fatality. The number of observations or trials must be sufficiently large. 

Crash Problem 
Utilizing the U.S. Department of Transportation data collections, databases and published statistical analysis, the 
crash problem on U.S. roadways in 2016 [4] was reported as 34,439 fatal police-reported crashes, 2,177,000 injury 
police reported crashes, and 5,065,000 property damage only (PDO) police-reported crashes, 37,461 people killed, 
3,144,000 people injured, and 3,174 billion vehicle miles traveled. Additional crashes occurred that were not 
reported to the police; in 2010, the National Highway Traffic Safety Administration (NHTSA) estimated these 
unreported crashes as a 59.7% increase in PDO and a 39.7% increase in injury crashes [2]. Figure 1 shows a plot of 
the 2010 crash incidence versus severity. Ideally, future safety network analyses would be founded on the combined 
number of police-reported plus unreported crashes. 

 

Figure 1. Crash Incidence versus Severity (2010 data; source: DOT HS 812 013) 

Table 1 lists the police-reported crash incidence rates using 2016 data. Note that the crash per VMT rate for 
passenger cars, light trucks and buses are similar in magnitude as the total average. The police-reported crash 
incidence rate for large trucks is significantly lower, possibly due to these vehicles being operated by trained 
professional drivers.  
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Table 1. 
Crash Incidence by Vehicle Classification (2016 data; sources: DOT HS 812 580 and [10]) 
Vehicle 

Classification 
Police-reported Crashes 
(Fatal + Injury + PDO) 

VMT (millions) 1 crash per (VMT) 

Passenger Car 7,198,839 1,440,228 200,064 
Light Truck 5,010,069 1,409,490 281,331 
Large Truck 502,213 287,895 573,253 
Motorcycle 129,421 20,445 157,973 

Bus 71,227 16,350 229,548 
Other/unknown 21,462 Not reported - 

 Total = 12,933,231 Total = 3,174,408 Total = 245,446 
 

In 2015, NHTSA published findings from a statistical analysis of the National Motor Vehicle Crash Causation 
Survey (NMVCCS) [5], which collected on-scene information about the events and associated factors leading up to 
crashes involving light vehicles. NMVCCS is a weighted sample of 5,470 crashes, which represents an estimated 
2,189,000 crashes nationwide. NHTSA found that the critical reason, which is the last event in the crash causal 
chain, was assigned to the driver in 94 percent (±2.2%) of the crashes. In about 2 percent (±0.7%) of the crashes, 
NHTSA found that the critical reason was assigned to a vehicle component’s failure or degradation, and in 2 percent 
(±1.3%) of crashes, it was attributed to the environment (slick roads, weather, etc.). Among an estimated 2,046,000 
drivers who were assigned critical reasons, NHTSA found recognition errors accounted for about 41 percent 
(±2.1%), decision errors 33 percent (±3.7%), and performance errors 11 percent (±2.7%) of the crashes. 

METHODOLOGY 
A technology-neutral approach to AVs would focus on safety aspects and system safety performance. Shifting the 
mindset to a system of systems construct with an emphasis on test and evaluation supports quantifying safety in 
terms of risk and performance. A test and evaluation strategy would include physical testing, modeling, simulation, 
verification, validation, and accreditation. Stakeholders would use this methodology to generate a sample size of test 
scenarios to which manufacturers would demonstrate the level of safety. Large statistical sample sizes will only be 
achieved through physical testing and modeling/simulation. The benchmark would be comprised of a combination 
of test trials plus simulation runs that vary key performance factors. Reliability theories were developed for aircraft 
components under a metric of flight time hours and are adapted here to VMT. This method describes how to 
statistically estimate the level of AV safety without billions of on-road demonstration miles. There exists 
tremendous opportunity to leverage modeling and simulation along with targeted testing to characterize AV safety 
performance in terms of a reliability distribution. Modeling and simulation supports enhancing the physical test 
scenarios through iterations that vary speed ranges, travel direction, traffic density, etc. 

Key steps in this analysis are:  

• Identify the most relevant set of risk metrics. For example, incidence (number of crashes, severity in terms 
of fatalities, injuries, and property damage), and vehicle miles traveled (VMT). 

• Identify the data needed to support a risk-based analysis. For example, 2,967 billion VMT (2010 data) 
divided by 6,077,362 police-reported crashes (2010 data) results in 1 crash per 488,205 VMT. The average 
of 11,866 VMT per registered vehicle (2010 data) multiplied by an estimated average vehicle age of 10.8 
years (passenger car vehicles, 2010 data) results in an available test time Ttest of 128,153.  

• Adapt the parametric binomial reliability distribution test by replacing the random variable of Time with 
vehicle miles traveled (VMT). 

• Select the % reliability to be demonstrated. For example, ‘85% reliable.’ 

• Select the % confidence level. For example, ‘with 90% confidence.’ 



Last Name Main Author  4 
 

• Select the number of test failures that can occur in the sample. For example, ‘1 failure allowed.’ 

• Calculate the sample size based on VMT and Ttest to which AV manufactures would demonstrate the AV 
level of safety.  

• Choose trials (e.g., tests and model/simulation runs) that characterize vehicle performance in steering, 
accelerating, braking, sensor recognition, causes of vehicle control loss, visibility, etc. 

In this analysis, the independent test trials correspond to VMT, regardless of vehicle maneuver, speed, etc. An 
example of the typical resulting output is in the form: a sample size of 11 pedestrian detection system test trials with 
0 failures occurring will demonstrate a reliability of 80% at the 90% confidence level. In other words, if the item 
reliability is < 80%, the chances of passing this test are < 10%. 

Test Sample Size 
Table 2 is a representative test sample size matrix which was populated by exercising a parametric binomial 
reliability demonstration test calculator [8] with mission time equal to 1 crash per 488,205 VMT (based on 2010 
data) and the available test time equal to 128,153 hours (based on 2010 data). Setting the reliability and confidence 
levels is a subjective decision. If the current level of safety for nonexempt passenger cars and light trucks is 
estimated at 85% reliability with 95% confidence, then a test series for equivalent AV safety performance would 
require a sample size of 425 tests that allows one failure. An alternate approach is to conduct testing until one failure 
occurs, and then estimate the reliability and confidence level. 

Table 2. 
Example of a Test Sample Size Calculated using the Parametric Binomial Reliability Distribution  

Passenger Cars 
& Light Trucks 

Confidence with 1 Failure Allowed 

Reliability 80% 85% 90% 95% 98% 99% 
99% 4,325 4,871 5,618 6,851 8,425 9,587 
98% 2,152 2,423 2,795 3,409 4,192 4,770 
95% 848 955 1,101 1,343 1,652 1,879 
90% 413 465 537 654 804 915 
85% 268 302 348 425 522 594 
80% 196 220 254 309 380 433 

 

Once the test sample size is determined, the test and evaluation strategy can be developed that describes the test 
scenarios and corresponding specific number of physical tests. Initially, test scenarios can be derived as a mix of 
existing FMVSS tests and AV sensor suite edge or challenging cases. Examination of sensor algorithms would assist 
in prioritizing tests and test scenarios that score high in risk assessment parameters probability of failure and 
consequence of failure. For example, low sun angle is a challenge for camera technologies. Therefore, of the 425 
tests, a proportion representative of the risk would be allocated to low sun angle conditions for which the camera 
technology significantly contributes to vehicle control. Finally, the test and evaluation strategy can be tailored to a 
specific geographical region, such as state, city, county, geofenced area, or national level.  

Building the Safety Framework 
Consider building the safety framework by vehicle classification. The U.S. follows a self-certification system of 
compliance, in which vehicle and equipment manufacturers certify that their products meet applicable standards. 
Additionally, the manufacturer determines the vehicle classification – e.g., passenger car, large truck, bus, etc. 
Historically, stakeholders have considered self-certification to be demonstrated through physical test. AVs will 
likely propel stakeholders toward a new era of targeted physical testing supplemented with extensive modeling and 
simulation to demonstrate safety. 

The values shown in Table 3 represent an example of a safety framework for nonexempt passenger cars and light 
trucks. The crash risk is derived from reference [9]. The reliability distributions were selected to reflect the network 
element risk. For example, U.S. DOT data shows high motor vehicle reliability with high confidence as 
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demonstrated through the low number of crashes caused by vehicle failure, likely buttressed by NHTSA recall 
authority. The environment – e.g., roadway surface, markings, traffic communications (signage, lighting), etc. - has 
high reliability with high confidence, however, atmospheric conditions may contribute uncertainty and adversely 
impact reliability and confidence. Estimating the current level of safety for human drivers of nonexempt vehicles to 
be 85% reliability with 90% confidence reflects the NVMCCS analysis attributing 94% of passenger car and light 
truck crashes due to driver error. The unknown/uncertainty element gives stakeholders flexibility to examine 
competencies and scenarios of interest; for this paper, the reliability distribution of 80% / 85% was assigned as a 
minimum value. 

Table 3. 
Example of a Safety Framework for Passenger Cars & Light Trucks 

Network 
Element 

Crash 
Risk 

[Ref. #] 

FMVSS Reliability 
Distribution 

Number of Tests: Parameter(s) 

Environment 2% 301, 302, 303, 304, 305 90% / 95% 109 tests: rain, ice, snow 
Vehicle 2% All Standards 95% / 95% 220 tests: brakes, steering, 

occupant protection, etc. 
Driver 94% Recognition: 101, 103, 104, 108, 

111, 113, 123, 125, 131, 138, 205 
 

Decision: 102, 108, 124, 135, 
209, 210, 213, 225, 401 

 
Performance: 105, 106, 109, 110, 

116, 117, 118 
 

Non-Performance: 114 
 

Other: 

85% / 90% 17 tests: low sun angle 
 
 

28 tests: speed, curves, 
intersections 

 
7 tests: lane management, LTAP 

 
 

3 tests: maneuvers near a “taco 
truck” with pedestrians 

4 tests:   see NMVCCS data 
Unknown/ 

Uncertainty 
2% Varies 80% / 85% 37 tests: double parked, orange 

cone, etc. 
    Total = 425 tests 

 

Overall safety by vehicle class allows for differentiation in safety levels. A safety framework for large trucks would 
vary from Table 3 in the crash risk and reliability distributions, requiring additional data analysis. It is likely that 
trained professional drivers would be associated with a lower crash risk and a higher reliability distribution for the 
Driver element, and a safety level higher than passenger cars.  

Table 3 shows data parsed into the NMVCCS categories which aligns better with the construct of “level of safety” 
for AVs because it treats the common vehicle systems (e.g., powertrain, steering, braking, etc.) separate from the 
Driver, and also allows for refinement of the driver behaviors (e.g., recognition, decision, performance, non-
performance, and other). However, the NMVCCS sample is only light vehicles and this distribution cannot be 
projected directly onto NHTSA GES or CDS estimates for other vehicle classifications. An alternate option could be 
to parse the test sample by pre-crash scenario (Rear End, Crossing Paths, Road Departure, Pedestrian, Cyclist, etc.) 
which is a good fit for tracking how crashes occur and factoring system effectiveness. 

Successful implementation depends on reaching consensus on the metrics, collecting and sharing relevant AV 
characterization data, and revisiting at regularly defined intervals. 

CONCLUSIONS 
All aspects of AV safety and reliability must be demonstrated before candidate AVs are deployed onto public 
roadways. This proposed methodology establishes a framework to quantify safety performance levels and includes 
the flexibility to incorporate new data describing driver performance or technological capabilities as AV technology 
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evolves. To paraphrase Aristotle, the whole framework is greater than the sum of its parts. Blending established 
engineering concepts from motor vehicle safety, reliability, and systems engineering to form a new approach to 
specify benchmark test & evaluation scenarios places a reasonable burden on all stakeholders and is achievable well 
before driving billions of miles. 

Table 4 lists one measure of vehicle incidence rates for different types of vehicles. Mindful that VMT and flight 
hours are not comparable metrics, the promise of AVs may be realized if it follows the trend of automated aviation 
safety. 

Table 4. 
Compilation of Vehicle Incidence Data 

Vehicle Incidence Data 
Police-reported Motor Vehicles Crashes 0.0205 crashes/ 10,000 VMT                       [Ref. 2] 
Estimate for All Motor Vehicles Crashes 0.0457 crashes / 10,000 VMT                      [Ref. 2] 

CA DMV AV Disengagements 38.6 disengagements / 10,000 AV VMT           [2017 data] 
Automated Aviation 0.5 accidents / 1 million take-offs                [Ref. 6] 
Commercial Aviation 0.149 accidents / 10,000 flight hours           [Ref. 6] 

General Aviation 7.11 accidents / 10,000 flight hours             [Ref. 6] 
Customs & Border Patrol Aviation 52.7 accidents / 10,000 flight hours             [Ref. 6] 
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