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ABSTRACT 

The danger of motorcycle accidents is ubiquitous during the otherwise relaxing and enjoyable activity of riding a 
motorcycle. The consequences can be severe and the economic burden, both on the individual and the state, is 
high. Yet, when wanting to prevent such accidents, it can be seen that they are hard to predict, due to the high 
complexity of individual factors playing a role in each single accident. 

To tackle this issue and extract generalizable characteristica of driving dynamics, the authors present the findings 
of “viaMotorrad”, a project to obtain motorcycle dynamics data on selected roads in Austria and determine the 
risk of an accident at given road sections. This is a collaborative project by the Austrian Road Safety fund, 
between the partners Austrian Institute of Technology, TU Wien and KTM. 

Through the use of supervised machine learning techniques we demonstrate that there are indeed generalizable 
factors in the driving dynamics at previous accident sites and use these factors to determine further critical road 
sections. These results are a first step towards an objectification of motorcycle driving risk and semiautomated 
risk assessment of roads for motorcycle riders. The method offers the possibility of identifying critical road 
sections through analysis of a small number of test drives. 

INTRODUCTION 

Within Europe, among road transport fatalities, a staggering one sixth are motorcycle riders or pillion passengers 
on a motorcycle. Our special focus, Austria, demonstrates an even higher number: the last 20 years have seen 
about 1850 motorcycle fatalities and about 66.500 injuries occurred nationally. The number of fatal accidents 
among motorcycle riders and passengers compared with the total number of traffic accident victims is also 
alarming: In 1992, the percentage of all fatalities was only 5.7%, while in 2017 a percentage of 20.0% set a new 
tragic record [1]. 

We identify two factors which evidently contributed to this outcome: Firstly, motorcycle safety had not been a 
primary concern compared to more common vehicles and improvements in the more general traffic environment 
(road layout, road conditions). Secondly, motorcycle use has increased substantially over the last couple of years 
(with both more registrations and more active use of motorcycles). While the total amount of motorcycle 
accidents is roughly constant [1], it appears that without specific measures for the safety of motorcycle riders, the 
otherwise declining number of accidents and fatalities for other vehicle categories will not be observed for 
motorcycle accidents, at least in Austria. This supports the need for a focus on the scientific study of motorcycle 



accidents, since there is a multitude of possible causes in motorcycle accidents and these must be understood 
further reduce the risks that motorcycle riders face. 

Illustrative results as well as the scope of the traffic safety project “viaMotorrad” will be presented in this paper. 
The underlying initiative aims to improve the safety of motorcycle drivers by collecting riding dynamics data. 
Following a study of previous accident data, combined with data of potentially critical locations based on the 
assessment by motorcyclists and focusing on frequently driven motorcyclists’ routes in Austria, road sections 
were clustered and selected for a unique investigation performed with the newly introduced motorcycle probe 
vehicle, MoProVe [2]. The goal of the project was to identify high accident-risk spots within the road network, 
utilizing data collected by MoProVe. The method developed in this project offers a means to locate critical 
sections within the road network, in order to carry out safety measures to reduce motorcycle accidents and 
injuries. 

Ultimately, the intended outcome is to provide a hazard map of motorcycling dynamics for the selected roads. 
This map will be part of a general effort to objectify the potential safety impact for motorcyclists on the track. 
The hazard map could then be prepared for far more extensive road networks in the future. This could yield a 
priority ranking of road sections in terms of driver safety/risk and necessary steps to be taken to increase road 
safety for bikers. 

The selection of the type of tracks and the individual motorcycle riders who helped to obtain training data for our 
method introduce natural limits of generalizability. However, an expansion of the data base to more drivers and 
yet more diverse tracks will be a means to reduce a potential bias in the future. Our result is that generalizable 
features in the driving dynamics around the locations of previous accidents can be learned by a supervised 
machine learning algorithm. This is a first step towards objective assessment of motorcycle accident risk 
locations through driving dynamics of multiple bikers on the same track. 

 

MATERIALS AND METHODS 

The project team was kindly provided with a motorcycle by KTM Sportmotorcycle GmbH (KTM) [3] and this 
motorcycle was equipped with special measurement systems by the TU Wien (TUW) and the Austrian Institute 
of Technology (AIT). The measurement systems gather all available driving dynamics data for the purpose of 
later analysis. The vehicle has a normal road approval, so that measurements can be undertaken under normal 
traffic conditions.  

 

For the purposes of the project, the measurement vehicle had to fulfill a number of criteria: It should be equipped 
with modern on-board measurement systems, to provide an extension of the data collection of the externally 
added systems. Furthermore, it had to be user-friendly and provide access to the internal hardware and software 
features. 

 

The KTM 1290 Super Adventure (see Figure 1) fulfilled all requirements. The motorcycle is powered by a 
1300cc V-twin engine, mustering 160 HP (horse power) and a maximum torque of 108 Nm (Newton meter). Its 
dry weight is 222 kg. This machine provides a multitude of onboard systems such as Motorcycle Traction 
Control (MTC), Motorcycle Stability Control (MSC), Combined-ABS (C-ABS), Motor Slip Regulation (MSR) 
and a semi-active suspension system (SCU). These are dependent on numerous sensors, such as several brake 
pressure gauges, wheel speed sensors, a throttle position sensor and many more. System data is obtained via the 
vehicle CAN-bus, in addition to being collected and processed by separate data recording systems. Another 
advantage of this machine is the option to activate or deactivate assistance systems (i.e. the motorcycle offers to 
select different riding modes). This would make it possibly to imitate a more basic motorcycle, without 
additional features.  



 

Figure 1. KTM 1290 Super Adventure equipped and instrumented as a Motorcycle Probe Vehicle 
(MoProVe). 

Measurement systems 

We illustrate the two main measurement systems that are available in the test motorcycle. Both systems contain a 
data logger, IMUs (Inertial Measurement Unit), additional sensors and interfaces to the vehicle’s CAN-bus. 
There was some redundancy between the data acquisition by the independent IMUs. 

Below, we present the two systems separately and compare the quality of their output within the experiment.  

System B (Blue): The blue system is comprised of hard- and software by RACELOGIC [4], with the 
main component being a VBOX 3i dual-antenna data-logger. This VB3iSL is depicted in Figure 2 (a) besides a 
functional block diagram of its components in Figure 2 (b). 

(a)                                                                                 (b) 

 

 

 

 

 

 

 

 

 Figure 2. Picture of RACELOGIC data-logger VB3iSL with display unit; (b) Block diagram of Input and 
Output signals for data-logger VB3iSL (VBOX automotive, 2017). 



A high-performance GPS engine employing twin antennas capable of providing a 100 Hz (Hertz) signal update 
rate for all GPS / GLONASS parameters is available on the VB3iSL. From the Doppler Shift in the GPS carrier 
signal both heading and velocity can be calculated with high accuracy. Additionally, the VB3iSL tracks the 
Russian GLONASS range of satellites. This benefits the system in that there are nearly twice as many satellites 
in range and thus the system maintains a stable satellite lock in places where GPS-only reception can lead to 
failures in data acquisition. With two GPS / GLONASS antennas simultaneously in use, measurements of signals 
such as slip angle, pitch or roll angle, yaw rate, true heading, lateral velocity and longitudinal velocity are 
feasible.  

The quality of the system output is improved by two additional features. A DGNSS (Differential Global 
Navigation Satellite System) Base Station was included to further enhance the accuracy of positional 
measurements of the VBOX unit, through the use of differential correction data. Utilizing the additional signals 
from a Base Station, with a known fixed position, the difference between this known position and a position 
received via GPS/GLONASS can be accurately monitored. This correction signal can then be used to 
significantly improve the accuracy of the absolute position. While the 95% CEP (Circular Error Probable) is 3 
meters for standard position measurements, the DGNSS-station allows a radius of 80 cm (centimeters) to be 
achieved.  

Although the relative position accuracy is higher than the absolute position accuracy, it is yet further improved 
by an Inertial Measurement Unit (IMU, see Figure 3): The sensor on the MoProVe is a 3-axes accelerometer 
with additional 3-axes measurement of the angular rate. Through numerical integration of the measured signals, 
linear velocities and distances as well as roll, pitch- and yaw-angles can be calculated. Combining these 
postprocessed IMU-signals with the information provided by the GPS-antennas, numerical algorithms 
implemented in the system software can optimize the system output and return highly accurate position and 
velocity signals. This enables the system to continue its measurements at locations with weak (or no) GPS/ 
GLONASS satellite signals, e.g. in tunnels, as the system can rely on the IMU data. 

 

(a)                                                                                           (b) 

 

 Figure 3. a) Picture of RACELOGIC Full HD camera system; (b) Inertial Measurement Unit (IMU) to 
measure 3-axes accelerations and 3-axes angular rates (VBOX automotive, 2017). 

System R (Red): The other data acquisition system implemented on MoProVe is a measurement 
system specifically designed for motorcycle applications, while System B has been developed with a focus on 
application in automotive engineering. System R is called the 2D ([5], Debus and Diebold) system and it is a 
popular system with motorcycle racing teams worldwide. On MoProVe, it provides a supplement data source to 
the other system as the focus and features of this system are different from System B.  

System R provides a data logger with dashboard display unit, a single GPS-antenna and two 6-axes IMUs, 
allowing it to be used as a stand-alone system in principle. With respect to these components, there is a 
functional redundancy provided by both systems. However, system R is more reliable and capable when it comes 
to the measurement of vehicle parameters. The logger of the 2D-system can record on up to 200 channels, with 
the sampling rate being as high as 3.2 kHz. The system provides 2x8 analog input channels with 16 bit (high-
resolution) ADC (Analog to Digital Converter) available, several dedicated wheel speed input channels and two 
independent CAN-lines with full CAN routing [5]. Moreover, the logger and components are small in size, low 
in weight and robust, with low power consumption. 



Comparison of Systems B and R: System R provides more flexibility than system B, since the 
sampling rate of system R is higher and therefore more accurate data is obtained. Also, more channels are 
available in system R. In addition to that, access to the motorcycle’s CAN-bus system is easier with this system 
and many CAN signals can be recorded. To add to the already high number of sensors and signals accessible on 
the KTM bike, a separate steering angle sensor was also installed and its signal was sampled. Examples of 
measurable signals are Wheel speed signals, brake fluid pressure, throttle position, engine speed, gear position 
and brake operation. 

For the purpose of measuring acceleration signals and angular rates, system R is superior to system B since two 
lightweight 6-axes IMUs provide data and the sampling rate can be set as high as 3200 Hz. Therefore, it can be 
seen that in-plane dynamics of the motorcycle, as well as stability and detection of unstable behavior, steering 
maneuvers, etc. are best studied by using system R. 

The technical elements of system R are placed in a side case on the right hand side of the bike, while another 
side case on the left hand side is used for system B. Positioned at the very end of the luggage bridge, an 
aluminum “sensor bar” was placed, to hold all 3 GPS-antennas and the IMU of system B. Below the seat, the 
IMU of system R could be found, in the form of a tiny red box. The additional IMU of system R was contained 
in the GPS-antenna mounted on the sensor bar.  

Measurements 

The measurements were performed by experienced but not professional or trained test riders. We could not 
include new/amateur drivers as the measurement runs and tasks would have been very hard on a novice and we 
also could not risk the MoProVe being damaged. The authors acknowledge that the quality of the results also 
hinges on the number of test drivers and diversity of the observed driving dynamics. For this project, the stated 
aim was to investigate the feasibility and the possible quality of revealing motorcycle accident risk from driving 
dynamics. Thus, it would be essential that the method would yield instructive results without needing a huge 
amount of measurement data from many riders and that it could be applied even on a small statistical base of the 
sampled data. 

Data was obtained on all selected road sections by each rider, several times. This turned out to be a crucial 
feature towards stable results, in that an “average ride” for each rider could be calculated and single events could 
be removed from the classification of the elements of the road section. Test rides took place during normal traffic 
hours and in a considerable number of rides it was necessary to eliminate events such as an overtaking maneuver 
or a hold-up behind an agricultural vehicle. 

Six tracks in lower Austria and Styria were included in our study. We got access to single driver and frontal 
collision accident site data for all tracks dating from the year 2012 to the year 2015. 

We used the smoothed (via a rolling average with a window of 60m) data of 9 dynamic variables (including X-, 
Y- and Z- accelerations, Yaw-, Roll- and Pitch-Rates) and their approximate derivates to set up our model. 

Model 

In a first step the obtained time-based data of the dynamic variables was transformed into location-based data for 
the 6 tracks under consideration (see [6] for details). 

Our model (patent pending) itself is based on 3 core steps: 

1. Determining “default” dynamics (common and/or averaged values) and extracting dynamics at known 
accident sites [7]. We smooth the location-based dynamics data by computing a rolling average of 
neighboring values, rather than the raw dynamics data. 

2. Calculating a separation between the normal dynamics and the dynamics at accident sites [8], then 
using this difference to assign a value to each meter and using values at the accident sites to determine a 
limit value for each driver, [9][10]. 

3. Creating an overlay across all test drives, of transgressions of the limit values and determining the local 
maxima of a smoothed version of the resulting “warning surface” along the track. 

We then consider the obtained local maxima as warning points along the studied tracks and assign to each of 
them a range of 100m in either direction (based on an assumed speed of about 70 km/h, and then assuming the 
“run up” and consequences of an accident may account for several (5) seconds of “influence” on the dynamics of 



the recorded accident site), in which we consider driving dynamics to being potentially related to the observed 
maximum (dubbed the “Warning Area” around a maximum). 

See Figure 4 for a schematic representation. 

 

Figure 4. Summarized steps of the algorithm (from top to bottom). 

An accident site is then considered to be “included”, if it is within the 100m area of a local maximum.  

RESULTS 

We fit our model according to the accident site data and driving dynamics of the 6 included tracks. We illustrate 
the outcome on the “Kalte Kuchl” track in Austria (Figures 5 and 6 below).  

 

Figure 5. Kalte Kuchl track in Austria. Accidents (black stars), local extrema (tags) and extrema 
surrounding areas (red). Map created in QGIS 3.4. Driving direction is E to W, note arrow on the map. 



 

Figure 6. Kalte Kuchl track in Austria. Accidents (black stars), local extrema (tags) and extrema 
surrounding areas (red). Map created in QGIS 3.4. Driving direction is W to E, note arrow on the map. 

 

Our solution hits 60% of actual accident sites, in a domain that is 35% of the total track length. The overall 
quality of our solution can be seen in Table 1. 

Table 1. 

Percentage of Accidents found and Total Area Covered 

 Kalte Kuchl All Tracks 

Percentage Covered 45% 35% 
Included Accidents 31 90 
Percentage Accidents Included 74.2% 60% 
Overall, we manage to include a substantial part of the known accident sites, while “covering” 35% of all tracks 
lengths. The Kalte Kuchl track specifically shows a high percentage of accident sites found, but also a larger 
proportion of covered areas. This is largely due to the high amount of serpentine shaped parts on the Kalte Kuchl 
track. 

CONCLUSIONS 

We present a model capable of identifying locations of locally heightened accident risk, by comparing test driver 
dynamics data to driving dynamics of the same drivers at given accident sites and overlaying the results of 
multiple drivers along the given track. 

Given the primary locations of our local maxima (serpentine shapes and sharp curves), we conclude that the 
found locations are not random and the model manages to generalize hidden properties of at least a major portion 
of these accident sites. 

We note that there are a number of maxima in the left area of Figures 5 and 6, even though no accidents have 
occurred there so far. Currently the method does not differentiate between “high level” local maxima (for 
instance local maxima with more than 50% of testdrives showing a limit value transgression) and “low level” 
local maxima (for instance local maxima with less than 20% of testdrives showing a limit value transgression). 



We note that the local maxima in the left (western) part of the track would all be of the “low” type i.e. arising 
from only a small percentage of limit value transgressions. Making a difference between these two types of local 
maxima should further improve the quality of the predictions made by the method. 

We are able to identify at least one potential spot of dangerous dynamics: The sharp-tipped curve that separates 
the left low-risk domain from the right high-risk domain. No accidents occurred there in recent years, but the 
observed dynamics are similar to the known accident sites used to fit the model. 

We treat single person accidents and frontal collisions in this example. We used the dynamics and accident sites 
of a popular motorcycle track as basis to fit our model. The outcome of 60% accidents hit in 35% of the tracks 
covered suggests that there are objectifiable similarities in the driving dynamics occurring in at least a sizeable 
subset of observed accident sites. 

Our results show, that the driving dynamics of multiple drivers provide a feasible means of objective 
identification of points of motorcycle accident risk, since we are able to include a considerable proportion of 
accident sites across 6 different tracks. 

Limitations include the need to extend the available data and validate our findings more generally on tracks not 
currently related to the model. We note the need to provide a diverse and representative sample of motorcycle 
tracks and possibly driver types, in order to extract more robust and generalizable results. We also do by no 
means claim, that all motorcycle accidents, or even just single person motorcycle accidents, would be related 
exclusively to driving dynamics. Rather, we wish to contribute a certain level of predictability and 
generalizability to the difficult problem of identifying risky or dynamically demanding motorcycling locations. 

Possible future applications include the identification of road infrastructure needs for motorcycle safety, based 
on the locations revealed by our algorithm. 
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