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ABSTRACT 

 
Accidents in severe weather mainly arise due to a drastic loss of 
friction between the tires and the road surface unexpected by the 
driver. Beside all kinds of slippery winter conditions hydroplaning 
situations are even more dangerous not just for manually driven 
vehicles but also for automated vehicles when cruising at speeds 
above 80 to 100 km/h. This paper describes the Continental 
approach for a cascaded holistic safety system in imminent 
hydroplaning situations independent of the degree of automation. 
First, to reduce the overall hydroplaning risk a continuous tire tread 
depth monitoring function is integrated to trigger a timely 
replacement of worn-out tires. Second, a surround view camera and 
new tire-sensor-based early hydroplaning risk recognition allows an 
in-time driver warning or a system-initiated speed adaptation in case 
of automated vehicles. Especially for Automated Driving (AD) 
vehicles it is of major importance to avoid hydroplaning before it 
happens. Third, this information is send to the cloud-based eHorizon 
service so that also other traffic participants can be informed before 
entering a hydroplaning risk area. In case hydroplaning cannot be 
avoided a control system is designed and tested to evaluate an 
innovative assistance strategy in hydroplaning situations. The test 
cases demonstrate the suitability of this assistance concept. 
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1. INTRODUCTION 

 
Heavy rain and bad weather conditions involving reduced traction 
because of wet, snowy and icy surfaces have been major 
contributory factors to traffic accidents in general. Extreme weather 
conditions are responsible for 39% of all accidents in Germany, [2]. 
One of the most dangerous driving situations is hydroplaning, which 
is difficult to predict and almost impossible to manage for the driver 
but also for automated vehicles. The hydroplaning situation depends 
on both vehicle and tire conditions as well as on environmental 
parameters such as water film thickness on the road. During 
hydroplane steering generally is not possible, because tire-road 
friction is completely lost at the front axle and therefore any transfer 
of lateral and longitudinal forces is not possible by the front tires 
anymore. Today's measures to avoid the risk of hydroplaning are 
almost exclusively infrastructure-based such as roadway draining 
and/or speed limits.  
The Continental AG is developing a cross-divisional bundle of 
vehicle-based solutions proposing a cascaded holistic approach. This 
holistic approach is based on the four following cornerstones: 
 

 Avoid 
 Predict 
 Warn 
 Assist 

 
Beside the proposal to analyze vehicle dynamics and controllability 
in hydroplaning situations and sketch an active safety system to 
assist the driver safely through this dangerous situation the main 
scope of this paper is to avoid the hydroplaning danger by a 
continuous tire tread depth monitoring system and the integration of 
two complimentary sensor-based systems to detect the imminent 
hydroplaning risk in an early pre-hydroplane phase before 
hydroplaning occurs. This information is used to warn the driver or 
to actively control the speed of an automated vehicle in imminent 
hydroplaning risk situations. Additionally, in such cases the 
potential risk to other vehicles on the road can be mitigated by an 
early communication via V2X technology and eHorizon, facilitating 
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a network of solidarity where one vehicle acts as a safety sensor for 
all other vehicles and not just those in its direct vicinity. eHorizon 
can provide this information to vehicles that could potentially be 
affected, so they are able to adjust their routing and driving 
functions to the risky weather conditions.  
 
2. HYDROPLANING THEORY 
 
A hydroplaning imminent situation can be explained by the 
following three-phase tire zone model concept in figure 1.  
 
Exemplarily at a vehicle speed of 100 km/h a discrete element of the 
tire tread (P1) has a total contact duration with the surface and its 
top water layer of only 5 msec, where the three phases as displayed 
in the figure are passed through. In phase 1 the tread element is 
touching the water surface and displacing the water into the void 
volume of the tire’s tread pattern. In phase 2, when the void is filled 
with water, the tire is analogously acting as a slick tire and more 
water cannot be absorbed by the void volume any more. This is the 
reason why the excessive water must be displaced to the front and to 
the sides underneath the tire.  
 

 
 
Figure 1. Three-Zone model concept for hydroplaning: 
separation zone (phase1), intermediate zone (phase2) and 
contact zone 

As long as the tire’s inside pressure is higher than the water pressure 
generated by the water wedge in front of the tire, the tire is 
successful in displacing the water to keep its road surface contact in 
the runout of the footprint. Just if the pressure relation changes and 
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the pressure of the water wedge in front gets higher than the tire’s 
inside pressure the tire will swim up. This water displacement phase 
before it comes to hydroplaning is used to be detected by the 
systems for an early hydroplaning warning. This physics are the 
reason why there is a reasonable good chance to warn the driver up-
front before the tires will completely hydroplane. 
 
The critical vehicle speed is calculated as the averaged footprint 
length (Lm) divided by the touch down time (tA) for a discrete tread 
element (P1), where the touch down time depends on the water 
height (h0), the surface roughness (hR) and the radius (R) for a 
circular tread bar, [1]. 
 
 

    (Equation 1) 
 
 

 
 

   (Equation 2) 
 

 
 
With a mean support pressure (pm) of 0,3 MPa, a density (ρ) for 
water of 1000 kg/m3, a water height (h0) of 8mm and a surface 
roughness (hR) of 1mm the characteristic squeeze-out velocity for 
the water is approximately 35 m/sec. This results in considerably 
splash and spray water as a physical principal effect before it comes 
to hydroplaning. This splash water effect together with the 
oscillation caused by the water wedge in front of the tire’s footprint 
is used by the system to detect the hydroplane risk in the pre-
hydroplane phase. 
 
3. TIRE TREAD DEPTH MONITORING  
 
A critical factor in the context of hydroplaning is the residual tread 
depth of each tire. While periodic checks are sometimes done when 
changing from summer to winter tires (and back), there is no 
permanent monitoring of the tread depth. When using all season 
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tires, or in regions where the local climate does not require a 
seasonal change of the tires, the only tread depth monitoring relies 
on the user. Continental’s TreadDepthMonitoring function 
continuously estimates the tread depth of each tire and can provide a 
timely recommendation for a tire change. Based on the tire mounted 
sensor eTIS (electronic Tire Information System) which was 
launched for the European tire pressure monitoring aftermarket in 
2014, the system can now access not only the tire Pressure P and 
temperature T, but also the acceleration of the tire itself – not only 
the RIM. This allows for several new features (see also the direct 
indication of hydroplaning in chapter 5.2). It is clear, that by means 
of the tire acceleration, it is possible to measure the footprint length, 
which combined with the tire pressure provides the tire load L. 
Similarly, it is possible to accurately measure the impact factors 
influencing the dynamical tire radius RDyn. The dynamical tire radius 
itself can accurately be obtained by utilizing the wheel speed sensors 
ω in context with a GPS reference velocity VGPS (see fig. 2) and state 
of the art methods dealing with the geometric impact of curves and 
situations that produce slip. Given that the tread of a tire is a rather 
slowly varying parameter, unsuitable situation (e.g. high tire slip) 
can be discarded and the remaining measurements can be filtered 
appropriately to deal with remaining measurement noise and effects 
like tire belt expansion in the beginning of a tire life.  
 
 

 
 
Figure 2. Dynamical tire radius RDyn separated into two 
contributions 1) Dynamical tire radius up to the tread rDyn and 
2) Dynamical tire radius from tread rTD 
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This accurately determined dynamical tire radius is impacted by the 
tire velocity V, tire pressure P, tire load L, tire temperature T and 
finally the tire tread depth rTD. 
 

(Equation 3)
   

Common to all the impact factors is that their impact depends on 
measurable noise factors. Here eTIS is an integral component for the 
tire pressure, load, and temperature, while the velocity V can be 
obtained from ω. After compensating for the noise factors and 
employing state of the art learning techniques to deal with 
manufacturing tolerances, the remaining impact on the tires 
dynamical radius is its tread depth which can be extracted by proper 
algorithms from rTD. Based on this tread depth the following 
information (see figure 3) can be communicated to the driver in 
context with a specific tire type (e.g. summer vs. winter tire): 
 

 
 
Figure 3. Information strategy for timely tire replacement 

This provides ample time for an upcoming necessary tire 
replacement. Additionally, suboptimal tread depth levels (like the 
ones indicated in orange and red can be treated by the vehicle in 
context with the current velocity and information from the other 
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systems presented in this paper. This can then lead to a speed 
warning to the driver or a direct reduction of velocity via 
autonomous driving systems. In the following figure results are 
shown where the system was installed after some 8.000km into tires 
which were subsequently driven for another 40.000km on the front 
axle before they needed replacement, while the tires on the rear axle 
lasted a total of 60.000km. The vehicle has a front wheel drive 
architecture. The green lines indicate reference measurements 
together with min / max values (indicated by the bars). The black 
line is the output of the systems algorithm, while the red lines 
indicate the algorithms own error estimation. After carrying out 
several fleet campaigns with different vehicles and mission profiles, 
the overall accuracy of the algorithm was found to be +/-1mm, 
which is clearly achieved for the specific tire life on the vehicle in 
figure 3. 
 

 
 
Figure 4. Results of TreadDepthMonitoring for the 4 tires of a 
front wheel drive vehicle driving a total of 60.000km 

The front tires have been replaced after some 47.000km. The solid 
black line is the output of the algorithm with the red dashed lines 
being an error estimation. The green lines are reference 
measurements with corresponding uncertainties (bars). 
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4. LEVERAGING eHORIZON SERVICES 
 
Weather has a strong impact on the road friction and thus the driver 
safety. For instance, after a long period without rain, a lot of 
particles and oils percolate through the road surface. Thus, at the 
beginning of rainfall, those oils ascend on the top of the road, 
resulting in a reduced friction potential.  
 
Precisely predicting rainfall and especially friction related weather 
conditions is a major requirement for the future of Automated 
Driving solutions. This precision must not only boil down to 
temporal and spatial but to a strong reflection of the weather 
phenomena. 
 
Nevertheless, forecasts delivered by the Weather Forecast Providers 
(WFP) are not sufficient in both spatial and temporal resolution. 
Actually, those forecasts might be sufficient at the city level (1 km 
square grid and hourly update) but not for Automated Driving 
(A.D.) and Advanced Driver Assistance Systems (A.D.A.S.) 
purposes: for which less than 100 meters of precision and below 5 
minutes of frequency update are required. Figure 5 shows 4 weather 
cells near Frankfurt-City, WFP weather cell size is 1/100 of degree 
(in both longitude and latitude).  
 

 
 
Figure 5. Example of weather cells in Frankfurt a. M.  
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Relying on vehicles as IoT weather stations, is a way to overcome 
this precision drawback. Vehicles are constantly collecting a large 
amount of weather related data and producing real-time weather-
related observation system (i.e. activation of wiper, lights, and user 
or automated actuators as well as the information from temperature, 
hygrometry and pressure sensors). At a local level, vehicle data can 
be used to enhance weather forecast data. For instance, when a 
driver encounters a rainfall, either he activates the wipers, or the rain 
sensor is enabled. Those events are uploaded to the cloud where 
they are used to update short term weather forecasts. Wiper 
activation at the vehicle level increases the probability of 
precipitation at the cell level and thus each car contributes to 
changing the probability of the weather phenomenon. Figure 6 
illustrates this behaviour. Thus, from local information, eHorizon 
produces a high accuracy map from both WFP and vehicle data. 
 

 
 
Figure 6. Road Weather Enhancement using vehicle data 

The confusion matrix below compares results on rain detection for a 
Weather Forecast Provider (WPF) and our Road Weather (RW) 
service for a trip of 20 minutes with rain by only one vehicle. As the 
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matrix shows, the WFP does not predict rain for the whole trip (only 
69%). RW, with only one vehicle, increases the precision by 30% 
(90% of good classifications). 
 

Table 1. 
Confusion Matrix for rain weather  

 
 

 
 
 
 
 
With eHorizon Road Surface Condition services as an extension of 
eHorizon Road Weather it becomes possible to predict weather 
related situations and their impact on the road conditions and 
tire/road friction for the road ahead. Machine Learning approaches 
facilitate training of personalized road models to detect friction 
related hazardous weather situations such as hydroplaning or black 
ice. This method allows an accurate and fast prediction for a single 
road segment. eHorizon supports driving functions by delivering 
required information along the vehicle path in advance, before 
sensors can detect dangerous situations in immediate surroundings.  
 
Adverse weather with heavy rain and exceptionally when first 
vehicles have already experienced and detected pre-hydroplane or 
even (full) hydroplane the information about the potential 
hydroplane risk for a specific weather cell is send to eHorizon. 
eHorizon services again will provide this information to other 
vehicles that could potentially be affected, so that they are able to 
adjust their driving functions to the risky weather conditions.  
 
5. PREDICTIVE HYDROPLANING RISK RECOGNITION 
 
5.1. Water Spray Recognition by surround view cameras 
 
The approach to integrate surrounding sensors for early 
hydroplaning risk detection is because emerging of hydroplaning 
goes along with increasing water pressure between the tire’s 

% False 
Predictions

% True 
Predictions 

Rain : WFP 31% 69%

Rain : RW 10% 90%
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footprint and the road surface which generates the above-mentioned 
splash water and spray in all directions (see chapter 2). The physical 
effect of the squeezed-out water is used to be detected and classified 
by an intelligent surround view camera system. 
 

 
 

Figure 7. Water spray detected by surround view cameras for 
vehicle near field sensing  

Surround view systems are based on four miniaturized wide-angle 
cameras, one front, one rear and two side cameras integrated in the 
base of the two exterior mirrors. These systems provide a 360° 
panorama view as well as single images from all four cameras in the 
near-field of the vehicle’s environment. Additionally, to the sole 
imaging functionalities a bundle of different functionalities based on 
computer vision algorithms can be offered to the customer. Main 
use cases are parking functionalities with scalable level of 
automation.  
The main goal of the surround view camera approach for this 
application is to use computer vision and machine learning methods 
to discriminate between different road conditions and to detect the 
imminent risk of hydroplaning. Figure 8 shows an example image of 
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the right-side mirror-integrated camera for the hydroplane risk 
recognition and the relevant region of interest (ROI) in red to be 
evaluated.   

 

 
 

Figure 8. An example of the ROI for the Hydroplane (risk) class  

To automatically distinguish between different road conditions, a 
classification framework based on Fisher Vector Encoding [14], 
which has become the state-of-the-art approach for a variety of 
image classification tasks, is proposed. In a pre-processing step, a 
Region Of Interest (ROI) is extracted from the original surround 
view image (see figure 9). The determination of its location, shape, 
and size is a crucial aspect for robust classification. On the one 
hand, the ROI must provide sufficient information to allow for the 
separation of the different classes. On the other hand, however, the 
ROI should only cover as few as possible information of the 
environment, since characteristics, which are not related to the 
actual road condition, might cause overfitting, especially in the case 
of limited training data. Once an appropriate ROI is defined, a 
compact and generic representation of the image is computed.  
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Figure 9. Typical pipeline for digital image processing   

For this purpose, a set of local image features are extracted on a 
regular dense grid. For instance, the frequently used Histograms of 
Oriented Gradients (HOG) [12] feature descriptors can be applied to 
obtain a compact feature vector for each grid cell by computing a 
histogram of occurrences of image gradient orientations. In a further 
step, it is possible to reduce the dimensionality of the feature space 
by applying Principal Component Analysis (PCA) [13] and 
discarding the dimensions that contain the least information. Finally, 
the set of feature vectors are embedded into one global 
representation per image using Fisher Vector Encoding (FVE) [14]. 
In the training phase, a Gaussian mixture model is fitted to the 
training data.  During encoding, the gradient of the log-likelihood 
with respect to the model parameters are determined based on the 
soft assignments of every local descriptor to each Gaussian 
distribution of the mixture model. Those gradients can be 
understood as adjustments to the parameters of the trained model 
with respect to a given image which results in a generic and unique 
representation. The gradients of individual model parameters are 
finally concatenated into a single global feature vector for each 
image. In the last step of the proposed framework, a classifier is 
trained to obtain a mapping from global feature vectors to road 
condition classes. As suggested by the authors of FVE [14], a linear 
Support Vector Machine (SVM) [15] is applied, where the feature 
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space is separated by a hyperplane which is determined during 
training. Thereby, the hyperplane is defined by a small set of 
training examples located at the class boundaries which are referred 
to as support vectors. Furthermore, a probabilistic output can be 
achieved by applying logistic regression. 

The avoidance of overfitting poses a challenge in the particular case 
of hydroplane. Overfitting means the memorization of the training 
data, rather than understanding the concepts of the classes. As it is 
extremely dangerous to drive in hydroplaning situations in “real-
world situations” on public roads the training data for this class can 
only be generated in a safe proving ground environment. The state-
of-the-art test site of Continental is called “Contidrom”. Here are 
different water basins for tire tests available that can be filled up to a 
specified water depth to create different reproducible hydroplaning 
situations in a safe vehicle test environment. So far there are no 
examples of hydroplaning from real world situations available for 
training. Therefore, special precautions must be taken to learn the 
typical characteristics of hydroplane. In this paper, the results of two 
different basic experiments are presented. For the experiment “only 
Contidrom”, the system is trained and tested on images for all three 
classes (dry, wet & hydroplane risk) generated just at the safe 
proving ground environment. In the experiment “all Data” the 
system is trained and tested on images from the “Contidrom” 
proving ground (all three classes) as well as from “real-world 
situations” on public roads for dry and wet conditions only. 
Furthermore, hydroplaning situations only from the “Contidrom” are 
provided, as no real-world data can be generated safely for this 
class. In both experiments 50% of the data is used for training and 
the remaining 50% for testing, then the sets are switched in a second 
run. 
 
Table 2 shows the first results of the experiments for both cases. The 
Overall Recognition Rate (ORR) describes the ratio of correct 
classifications to the number of samples, whereas Average 
Recognition Rate (ARR) calculates this ratio per class, averaged 
over classes. The “Contidrom” tests form the baseline for the 
experiments, as no real-world influences are present. Hydroplaning 
risk is detected correctly in 97.4% of the cases.  
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 Table 2. 

Results of the experiments: ORR (Overall Recognition Rate; 
ARR (Average Recognition Rate) per class 

 
Experiment ORR ARR Dry Wet Hydroplane 
only 
„Contidrom“ 

95.6% 95.0% 93.3
% 

94.4
% 

97.4% 

all Data 98.5% 96.0% 99.0
% 

100
% 

89.2% 

 
The experiment “all Data” shows, that the system can learn the real-
world situation well and even exceeds the “Contidrom” results for 
both ORR and ARR. However, a decreasing detection rate for 
hydroplaning is apparent in this setting. This suggests that the 
system has not only learned hydroplaning features but has also taken 
features of the test site environment into account. Since there is a 
much higher variability in the road characteristics for “real-world”, 
the classification of hydroplaning is a much more difficult task. 
More experiments were carried out, where the system was only 
trained on “Contidrom” data and tested on a mixture of “Contidrom” 
and “real-world” data. In these settings, system performance 
decreased for wet and dry roads. This shows that the classifier 
trained only on the “Contidrom” data is prone to overfitting on the 
training environment and is not able to generalize very well. 
 
Since no large data set of real-world hydroplaning data can be 
generated safely, potential overfitting on the test site environment 
has to be prevented in a different way. The biggest improvements 
can be achieved by generating more data for the case of 
hydroplaning by a wide variation of surrounding influences, e.g., 
different road surfaces, perturbations, and illumination situations. 
Additionally, methods of data augmentation to artificially generate 
more variability in the training data can be applied. 
 
The first experiments clearly show that the discrimination between 
the different road conditions by surround view cameras is possible 
and on a good way. In particular, also the combination with feature 
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detection by a front camera and the enhancement by Deep Learning 
algorithms shows to be very promising. 
 
 
5.2. Water Pressure Recognition by new Tire Sensors 
 
Beside the usage of the eTIS Sensor for tire tread depth estimation, 
information about the interaction between the tire footprint region 
and the road when water is present is specifically of high interest. A 
model is outlined that explains a unique signature of hydroplaning in 
the radial acceleration that is measured by the sensors inbuilt 
accelerometer. The intended target is the detection of the very first 
manifestations of hydroplaning before the tire has lost a substantial 
amount of grip. Such an approach allows an early warning at vehicle 
speeds lower than the speed that ultimately results in full 
hydroplaning. With such an approach many of the driving situations 
that gradually lead to hydroplaning can be detected and by means of 
a driver warning or a more direct velocity reduction full 
hydroplaning can be avoided altogether.  
 
For a constant water film covering a road, it is well known [11] that 
increasing the vehicle velocity when driving on a wet road causes 
the tire road interaction to change through different stages. At low 
velocities, where the water can fully be absorbed by the tire’s void 
volume of the tread, the tire road interaction is characterized by its 
“normal” wet grip behavior. When increasing the velocity, at some 
point the tire’s tread is not able any longer to fully absorb the water 
(ref. also Chapter 2). There will be a water wedge build-up in front 
of the tire, which partially penetrates underneath the forward-facing 
section of the footprint region, while the rest of the footprint region 
still has full & partly wet grip on the road. Consequently, the tire has 
lost only a fraction of its contact area and still enables vehicle 
control for most practical purposes. This state is of special interest 
for the detection with the eTIS sensor. When increasing the vehicle 
velocity even more, at some point the water wedge will fully 
penetrate between the footprint of the tire and the road. At this point, 
the tire has lost its contact to the road and there is no more grip at 
all. This state can be labelled as full hydroplaning. 
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5.2.1. Model for radial acceleration measured by eTIS  
 
A model is presented explaining the radial accelerations seen by the 
eTIS sensor during the three different stages (wet grip, pre-
hydroplaning, full hydroplaning). It explains how the concept 
introduced in Chapter 2 (ref. also Fig. 1) is sensed by the 
accelerometer in the eTIS Module.  
 

In Fig. 10d) the radial acceleration Ra  measured by eTIS as a 

function of the rotation angle φ is plotted. This acceleration data is 

based on an interpolation between different acceleration values 
derived from the corresponding curvature experienced on the path 
that eTIS moves along. Assuming that the longitudinal velocity V  
is constant along the circumference of the tire, the radial 
acceleration at a given rotation angle φ is given by, 

 

 )(/2 φrVaR =    (Equation 4) 

 
where )(φr  is the radius of the circle locally converging to the path 

of the eTIS. The left part (Figs. 8a and 8d) shows the case of wet 
grip. At 0° the radial acceleration is defined by the radius of 

curvature of the tire 0r , i.e. by 0
2 / rV . When the sensor enters the 

footprint region, the radius of curvature decreases to smaller values. 

The largest acceleration corresponds to the smallest radius 1r , i.e. 

1
2 / rV . Inside the footprint area the path is nearly flat, i.e. the 

corresponding radius of curvature is very large which produces a 
measured acceleration of roughly 0. When leaving the footprint, the 
acceleration overshoot is approximately the same as when entering, 

i.e. 1
2 / rV . Finally, eTIS experiences the radial acceleration 

corresponding to the radius 0r , i.e. 0
2 / rV  at 360°. 
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Figure 10. eTIS radial Acceleration as a function of the tire 
rotation angle. a), d): wet grip. b), e): pre-hydroplaning. c), f): 
full hydroplaning. a), b), c): Radius of curvature corresponding 
to top position (orange), entering/leaving the footprint (yellow), 
inside the footprint (magenta). d), e), f): Radial acceleration 
model output for eTIS position 

In the case of pre-hydroplaning (Fig. 10b and 10e), this picture 
changes uniquely in the footprint region. Due to the penetration of 

the water wedge at the leading footprint edge, the small radius 1r  

does not directly go to large values but shows oscillations during 
this transition phase. These oscillations originate from the expulsion 
of the water at the leading footprint edge. They are much less 
present at the trailing edge. Consequently, a unique asymmetry 
between trailing and leading edge in the case of pre-hydroplaning 
can be expected. 
In the case of full hydroplaning (Fig. 10c and 10f) the tire slides 
virtually friction less over the water. In this case, the oscillations are 
expected to be of much smaller amplitude since the contact to the 
road is completely lost.  
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5.2.2. Hydroplaning tests with eTIS  
 
To test the model, a vehicle was equipped with eTIS samples that 
specifically focus on measuring the radial acceleration around and in 
the footprint region. This vehicle has been driven on a test track into 
a water basin with approximately 10-20 mm of water. The vehicle 
was fitted with new “Continental Viking Contact 205/55R16” tires 
with full tread depth. In a first test run the vehicle was driven with 
60km/h over a wet road. In this case, the shape of the measurement 
resembles the expectation for the wet grip case (Fig. 10d).  
In a second test run attention towards the radial acceleration when 
driving with 60km/h inside the water basin was payed, where the 
full hydroplaning threshold was ~75km/h. This pre-hydroplaning 
situation was analyzed in the time domain and also by means of a 
spectrogram in the following figure: 
 

 
 
Figure 11. eTIS radial acceleration and spectral density  

At the bottom of the figure, the eTIS radial acceleration signal as a 
function of time for this typical pre-hydroplaning situation is 
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plotted. It is important to note that when plotting against the time, 
the leading edge occurs before the trailing edge. In Fig. 10, the 
acceleration curve was plotted as a function of the counterclockwise 
defined rotation angle φ . The leading edge displayed exactly the 

oscillations expected from the expulsion of the water (red diagonal 
oval). These oscillations are not visible at the trailing edge. 
Consequently, the expected strong asymmetry was fully visible in 
the time-domain. 
 
At the top of the figure, the spectral density (color coded) as a 
function of the same time axis and also the frequency (y-axis) is 
displayed. One can clearly see an increased spectral density of rather 
low frequencies (0…200Hz) that is distributed somewhat 
symmetrically over the entire footprint area (indicated by a black 
oval). Additionally, an increased spectral density is also clearly 
visible at higher frequencies (500-1100Hz), but only around the 
leading edge (indicated by red oval). This analysis reveals an 
asymmetry between the leading and the trailing edge of the 
footprint.  The spectrogram confirms the higher frequency 
oscillations associated with the leading edge of the footprint, visible 
on the time signal, while also evaluating quantitatively the 
frequency range of the oscillations - roughly 500 Hz to 1100 Hz.  
 
Theory and measurements show promising potential for the 
detection of pre-hydroplaning. A unique asymmetric signature in the 
radial acceleration measurement has been identified. The 
corresponding eTIS based detection is able to trigger the prevention 
of full hydroplaning.  
 
 
6. HYDROPLANING ASSISTANCE BY BRAKE 
INTERVENTION AT THE REAR AXLE   
 
6.1. Active Safety Assistance  
In a hydroplaning situation the driver needs assistance in two 
distinct ways: firstly, to stabilize the vehicle in case of disturbances 
and secondly, to guide the vehicle safely along the course of the 
road. For control design a linear single-track model is used, in which 
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the front tire forces are neglected due to the hydroplaning behavior. 
The state vector x contains yaw rate and side slip angle as state 
variables. Control input u is the rear axle longitudinal force 
difference. This control action can be provided e.g. by torque 
vectoring based on rear wheel individual braking.  The disturbance 
input s is an unknown yaw torque Mz. caused e.g. by not 
homogeneous water film thickness at the front left and right wheels.  

 
The assistance is triggered by evaluating wheel slip and other 
signals provided by a standard ESC (Electronic Stability Control) 
system. The controller is designed as a state feedback in 
combination with feed-forward of the driver steering input w and 
disturbance compensation, i.e. the control law is given by 
 

           (Equation 5) 
 
The control structure is further extended by an inner-loop 
longitudinal slip control described in [4] to access the full control 
potential whilst ensuring that the rear axle will not be destabilized 
during the intervention. The sign of the control variable u 
determines which rear wheel is in slip control mode. The overall 
control structure of the hydroplaning active safety assistance is 
shown in Figure 12. Details of the design of the controller are given 
in [3]. 
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Figure 12. Control structure of the hydroplaning active safety 
assistance system with inner-loop slip control and outer-loop 
yaw rate control 
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6.2. Vehicle test results  
Figure 13 illustrates the hydroplaning tests with a rear-drive vehicle 
at the “Contidrom” proving ground. The hydroplaning basin is 100 
m long and 6 m wide. The water film thickness is approx..10 – 20 
mm. 
 

 
 
Figure 13. Hydroplaning assistance vehicle test at the 
“Contidrom” proving ground with front wheels floating. The 
vehicle is controllable by rear wheel brake torque vectoring 

The following figure illustrates the assistance principal as well as 
typical vehicle dynamics signals. 
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Figure 14. Hydroplaning vehicle tests at the “Contidrom” 
proving ground. (Left): Assistance principle: vehicle is 
controllable by torque vectoring at the rear axle. (Right): 
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Vehicle dynamics showing that vehicle is following driver 
steering command during hydroplaning phase 

Figure 14 illustrates the performance of the hydroplaning assistance. 
The driver initiated a steering wheel angle ramp-step during floating 
phase of the front wheels. With the assistance system active the 
vehicle is controllable and follows the driver commands by building 
up sufficient yaw rate and lateral acceleration. Without assistance 
the vehicle is moving uncontrollable in straight direction despite 
driver steering command. 
 
7. CONCLUSIONS 
 
The integration of the eTIS-based TreadDepthMonitoring function 
is intended to avoid driving with too low tire tread depth during 
heavy rain and adverse weather situations in the first place. A 
surround view camera and tire sensor (eTIS) based system for early 
hydroplaning risk detection has been proposed to recognize the 
imminent hydroplane risk and to warn the driver or to intervene in 
the case for an automated vehicle in an early phase before (full) 
hydroplaning occurs. Based on outdoor vehicle tests in real 
hydroplaning situations feasibility studies have been carried out 
where both systems demonstrate the potential and ability for a proof 
of concept and further base development.  
After adverse weather and pre-hydroplane events have been detected 
the cloud-based eHorizon services will be updated and provides 
services to inform other vehicles that could be affected before 
entering the hydroplane risk area.  
Further-on a simulation environment has been designed to study an 
active safety system with the purpose to assist within the physical 
limits when the vehicle already hydroplanes (full). An extended tire 
model reproduces the effect of the surface water leading to a 
complete loss of grip at the front wheels. The proposed assistance 
strategy is based on a state feedback and feed-forward control torque 
vectoring actuating the rear brakes. The system enables an adequate 
amount of yaw damping as well as a minimum guidance capability. 
Vehicle tests have shown significant benefit of the assistance.  
 
The hydroplaning assistance as proposed in this paper is the next 
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step to strongly support Continental’s long-term strategy “Vision 
Zero” leading to zero traffic-related fatalities, injuries and road 
accidents in future. 
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