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ABSTRACT        
 
The verification and validation processes of machine learning applications in advanced driving assistance systems or 
automatic driving systems are presented, and the processes are implemented by using the forward collision warning 
of pedestrian automatic emergency braking.  Supervised learning is one of the machine learning branches using 
image datasets to train the deep neural network for detecting or identifying the target object or scenario in a vision-
based application.  The verification process consists of specifying the requirements of a safety functionality, 
identifying the target objects in the Operation Design Domain (ODD) and pre-crash scenarios, and evaluating the 
quality and quantity of images based on safety requirements, also the coverage of ODD and pre-crash scenarios.  
The validation process consists of designing test procedures based on the specified ODD and pre-crash scenarios, 
conducting a sufficient number of tests, recording the test results, and evaluating the test results based on specified 
metrics.  Eight published pedestrian datasets from 2010 to 2020 are reviewed.  Three datasets contain the raining 
condition, but no dataset had images collected during snowing days.  Fog or smoke images are not available in all 
datasets, and the headlight condition is not addressed in all datasets.  The 3 datasets containing pedestrians in the 
nighttime did not label the vehicle’s headlight status as low or high beam.  All reviewed datasets had no annotations 
of pre-crash scenarios that the subject vehicle is maneuvering or not.  The validation of pedestrian detection uses the 
activation of forward collision warning as the evaluation metric.  Eleven vehicles were tested in 4 pre-crash 
scenarios with different pedestrian orientations and speeds: the test pedestrian crossing from the nearside, crossing 
from the offside, stationary facing away, and walking away in front of the vehicle.  The vehicle speed under test is 
40 kph and the test pedestrian’s speed is 5 or 8 kph.  The light conditions are daytime, nighttime with low beam, and 
nighttime with high beam without streetlighting in a test track.  The statistical test results show that some vehicles 
under test behave inconsistently when the test pedestrian is crossing or not crossing.  Test results in the nighttime 
with high beam are similar to that of the daytime; however, the test results in the nighttime show significant 
variations compared with that of daytime.  No trend or similarity can be found among all vehicles under test, the 
same vehicle may behave inconsistently under different light conditions and pedestrian orientations.  Also, the 
pedestrian detection time is longer when the test pedestrian is not crossing for some vehicles.  The vision-based 
machine learning application for the vehicle safety functionality reveals the underlying uncertainty of a deep neural 
network, and it results in the inconsistent performance in differentiated ODD conditions and pre-scenarios.                     
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INTRODUCTION 
  
Machine learning (ML) techniques have been widely used in the safety functions and vehicle control of Automated 
Driving Systems (ADS).  ADS perform object and event detection and response consisting of monitoring the driving 
environment and execute appropriate responses to objects and events.  The driving environment can also be referred 
to as Operational Design Domain (ODD) specifying the operating domains or conditions in which Advanced 
Driving Assistance Systems (ADAS) or ADS are designed to function safely.  Object and event detections can be 
achieved by using cameras, radars or lidars to retrieve images for further processing.  Supervised ML models can be 
used to identify vehicles, pedestrians, and other objects such as traffic signs, obstacles, and lane markings.  
Supervised learning is one of the ML paradigms being extensively applied for detecting objects through the training 
of a Deep Neural Network (DNN) with sufficient images of the target objects [1].  The detection accuracy depends 
on the quality and quantity of the training images and DNN modeling.  Collecting and labeling images containing 
target objects are time consuming, and this effort is proportional to the numbers of object categories.  Vehicles, 
pedestrians, cyclist, traffic signals, signs, lane markings, etc. are some objects to be identified in ADAS/ADS 
applications.  If training images are not labeled correctly or they are unable to cover most of the target object 
categories, then the detection accuracy will not be sufficient for the safety requirements of ADAS/ADS even though 
the DNN modeling is impeccable.  Scene semantic segmentation is to identify multiple objects and segment them as 
a relational group revealing a specific scenario in an image [2].  Pre-crash scenarios are crucial to safety applications 
to recognize the scene semantics in different ODD conditions.  If an ADAS/ADS application can recognize driving 
scene semantics using a DNN, then the categories of scenes and related characteristics should also be examined for 
verifying the safety limitations of ADAS/ADS in the same manner as verifying object detections.  The Verification 
and Validation (V&V) of ML applications in ADAS/ADS are not addressed comprehensively by using conventional 
engineering approaches as specified in automotive standards including ISO 26262 and 21448 [3].  One of the V&V 
challenges of ADAS/ADS safety applications is lack of transparency in ML development processes including the 
DNN modeling and training data.  Due to the complex and proprietary characteristics of DNN modeling, it is 
difficult to verify its robustness by reviewing DNN’s structures and algorithms; however, the validation can be 
achieved by measuring the level of detection accuracy.  This study intends to tackle the V&V of ML applications in 
ADAS/ADS safety functionalities by verifying the training datasets and validating the performance from the safety 
perspective.              
                                                                                      
RELATED WORKS 
 
Borg et al. [4] conducted a review of V&V for ML in the automotive industry.  This study found a gap between 
current safety standards and contemporary ML-based safety-critical systems from the V&V perspective.  Potential 
methodologies of V&V in ML applications can be categorized as: formal methods, control theory, probabilistic 
methods, process guidelines, and simulated test cases.  The challenges are no clear certification processes of safety-
critical systems with DNNs, a lack of transparency in ML processes, and concerns of the robustness and state-space 
explosion.  The challenges essentially originate from the workflow of supervised ML that training data are fed into a 
DNN, and test data are used to validate whether the design requirements are fulfilled [5].  The insufficient 
robustness and out of scope state-spaces are caused by the lack of comprehensive coverage in training data or the 
design defect in a DNN.  Depending on the design purposes of ML applications in ADAS/ADS, this drawback poses 
safety risks on scene identification, motion planning, decision making, vehicle control, or communication [6].  The 
first step of scene identification is to perceive the objects of interest that might result in a safety risk.  The perception 
tasks of ADAS/ADS are implemented by using cameras, lidars, or other sensors.  Sensors provide images of 
vehicles, pedestrians, cyclist, lane markings, etc. that had been collected and labeled as training datasets for 
developing ADAS/ADS applications.  Yurtsever et al. [7] surveyed 18 driving datasets being used for ADS 
developments; however, only 6 of them covers various weather conditions in the daytime and nighttime.  The 
insufficiency of ODD coverage for training datasets emerges as a safety risk.  Burton [8] proposed to set criteria of 
selecting training data based on the semantic analysis of triggering conditions (pre-crash scenarios) or other causes 
of errors for safety assurance.  Schwalbe and Schels [9] conducted a survey on methods for the safety assurance of 
ML-based systems and summarized that data representativity requirements including the scenario coverage, input 
space ontology, and experience collection can be used to validate ADAS/ADS functionalities.  Willers et al. [10] 
proposed mitigation approaches to safety concerns including the data distribution’s approximation of real world, 
data shifting over time, inadequate separation of tests and training data, and dependence on the labeling quality.  
Other safety concerns related to the DNN modeling are the brittleness of DNNs, unreliable output confidence 
information, unknown behavior in rare critical situations, and incomprehensible behavior.  The mitigation 
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approaches to addressing data concerns are the sensible data acquisition strategy, iterative analysis of test results, 
data labeling guidelines, continuous learning and updating, and data partitioning guidelines.  Cheng et al. [11] 
measured the robustness, interpretability, completeness, and correctness of DNNs by metrics including the scenario 
coverage, neuron activations, neuron activation pattern, adversarial confidence loss, scenario-based performance 
degradation, interpretation precision, occlusion sensitivity covering, and weighted accuracy/confusion.  Calculations 
of these metrics require analyses of DNNs attributes and corresponding images.  Amershi et al. [12] also stated that 
ML components are more difficult to handle as distinct modules than traditional software components.  ML models 
may be entangled with data in complex ways and experience non-monotonic erroneous behaviors.  The validation of 
ADAS/ADS applications can be achieved by various testing methodologies to address issues of residual risks, 
including the pre-deployment road tests, closed course testing, full/simplified vehicle environment simulations, and 
subsystem simulations [13].  Residual risks are unexpected scenarios/environment, unexpected human driver 
behavior, degraded infrastructure, and road hazards.  A direct measurement of the failure rate remains a viable 
approach to validate the ML applications in ADAS/ADS with the consideration of residual risks [8].           
                  
METHODS 
 
Supervised learning is a paradigm of utilizing a large and representative set of labeled data to train a ML model.  The 
training dataset is the crucial factor of determining the accuracy of object detection in ADAS/ADS applications.  A 
vision-based system requires objects of interest in the training dataset.  The rationale is without the objects of 
interest in the training dataset the probability of detecting the objects of interest can be close to zero, but not zero for 
false positives may exist in DNNs.  The best practice of improving the detection accuracy is to provide high quality 
images in the training dataset and develop a decent DNN that can achieve a high detection rate.  To ensure the 
detection accuracy in a vision-based ML application, the first step is to verify the training dataset that should have 
the required quality and quantity in the desired ODD conditions and pre-crash scenarios.  The verification is the 
process of evaluating whether the training dataset meets the safety requirements.   
 
Verification  
The process of verifying a training dataset is shown in Figure 1.  The first step is specifying the requirements of an 
ADAS/ADS safety functionality.   This is comparable with the specification of software safety requirements in the 
design phase of software development as defined in ISO 26262 [14].  The objects in potential risks of collision need 
to be specified based on the safety requirements.  Most common objects in the driving ODD are vehicles, 
pedestrians, motorcycle, cyclists, and other objects that may be struck by the subject vehicle.  Table 1 lists the top-
level categories of ODD classifications [15].  The images of a training dataset can be categorized according to 
physical infrastructure, operational constraints, objects, and environmental conditions.  In addition, the semantics of 
images can be categorized based on the pre-crash scenario groups including control loss, road departure, animal, 
pedestrian, cyclist, lane change, opposite direction, rear-end, and crossing paths as listed in Table 2 [16].  Each 
image can be labeled according to the categories of ODD and pre-crash scenarios.  Image labeling is a labor- 
intensive task that most existing ML datasets are labeled in the object level.  A semantic level labeling task demands 
more human endeavors, so the automation is desirable for mitigating the cost and time of labor.  Recent research of 
ADS started to work on the semantic scene identification [2, 17, 18, 19], these techniques can be applied to the 
labeling of ODD and pre-crash scenarios [20, 21].  After categorizing and calculating the quantity of images in 
categories of ODD and pre-crash scenarios, the distribution of images in each category can be reviewed and a 
reasonable inference can be made.  For example, if no nighttime illumination of pedestrian images is available in the 
training dataset, then the detection rate of nighttime pedestrians will be low most likely.  The number of images in a 
specified category can be an evaluation metric.  Also, the target object’s distribution in ODD and pre-crash 
categories indicates a sensible expectation of detection rates in those categories.  High density categories may have a 
better detection rate; on the contrary, low density or no coverage categories may have a low or even zero detection 
rate.  This information can also be the context of testing ODD conditions in the validation process.  For example, the 
edge testing cases can be designed based on the rare conditions in the training dataset.  The distribution of images in 
pre-crash scenarios is useful for providing the potential risk assessment across the coverage map.  Different pre-
crash scenarios represent differentiated viewing angles of the target object profiles.  The vehicle profiles are 
different in the lane change, opposite direction, rear end, and crossing path scenarios.  A pedestrian profile is 
different when they are crossing or not crossing (facing) a roadway.  Lastly, the age of a training dataset may be a 
safety concern.  When a dataset only contains outdated vehicles that may result in some new vehicles undetected.    
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Figure 1. The process flow of verifying a training dataset. 
 
 
 
 

Table 1. ODD classification with top-level categories 
 
ODD Element Conditions Categories 

Physical 
Infrastructure 

• Roadway Types 
 
 
 
• Roadway Surfaces 
• Roadway Edges 

 
• Roadway Geometry 

• Divided/undivided highway, arterial, urban, rural, 
parking, bridges, multi-lane/single lane, managed lanes 
(HOV, reversible lanes), on-off ramps, one-way, private 
roads, intersections  

• Asphalt, concrete, unpaved 
• Lane markers, temporarily lane markers, shoulder, 

barriers, curb 
• Horizontal/vertical alignment (curves, hills), 

superelevation, lane width 
Operational 
Constraints 

• Speed Limit 
• Traffic Conditions 

• High/low 
• Traffic density, others (emergency vehicles, 

construction, closed road, special event) 
Objects • Signage 

 
 
• Roadway Users 
 
• Obstacles/Objects 

• Signs (stop, yield, pedestrian, railroad, school zone, 
etc.), traffic signals, crosswalks, railroad crossing, 
stopped buses, construction signage 

• Vehicle types (cars, light trucks, large trucks, buses, 
motorcycles,), stopped vehicles, pedestrians, cyclists 

• Animals, debris  
Environmental 
Conditions 

• Weather 
• Weather-induced 

Roadway Conditions 
• Particulate Matter 
• Illumination 

• Precipitation, wind, snow, temperature 
• Standing water, flooded, icy, snow 

 
• Fog, smoke, smog, dust/dirt  
• Dark, streetlights, dawn/dusk, low sun angle, day light, 

headlights (low/high beam), oncoming vehicle lights  
 
 
 
 
 

Review the requirements of an ADAS/ADS safety functionality 

Identify the target objects of detection in the Operation Design Domain (ODD) 

Identify the target objects of detection associated with pre-crash scenarios 

Evaluate the quality and quantity of images based on safety requirements, coverage of ODD and pre-
crash scenarios      



Hsu 5 

 

Table 2. Pre-crash scenarios and groups 
 

Scenario 
Group 

Pre-Crash Scenarios Subject Vehicle Maneuver 

Control Loss • Control loss/maneuver 
• Control loss/no maneuver 

• Maneuver: performing a maneuver (e.g., 
passing, turning, changing lanes) 

• No maneuver: driving straight or negotiating a 
curve 

Road 
Departure 

• Road edge departure/maneuver 
• Road edge departure/no maneuver 

Animal • Animal/maneuver 
• Animal/no maneuver 

Pedestrian • Pedestrian/maneuver 
• Pedestrian/no maneuver 

Cyclist • Cyclist/maneuver 
• Cyclist/no maneuver 

Lane 
Change 

• Turning/same direction 
 

• Parking/same direction 
 

• Changing lanes/same direction 
 

• Drifting/same direction 

• Turn and cut across the path of another vehicle 
initially traveling in the same direction 

• Enter or leave a parked position and collide 
with another vehicle  

• Change and encroach into another lane other 
vehicle traveling in the same direction 

• Drift into an adjacent lane other vehicle 
traveling in the same direction 

Opposite 
Direction 

• Opposite direction/maneuver 
 
 
• Opposite direction/no maneuver 

• Make a maneuver (e.g., passing) and encroach 
into another vehicle traveling in the opposite 
direction 

• Drift and encroach into another vehicle 
traveling in the opposite direction 

Rear-End • Rear-end/striking maneuver 
 

• Rear-end/Lead Vehicle Accelerating  
 
• Rear-end/Lead Vehicle Moving  

 
• Rear-end/Lead Vehicle Decelerating  

 
• Rear-end/Lead Vehicle Stopped  

• Change lanes or pass another vehicle and closes 
in on a vehicle ahead in the same lane 

• Close in on an accelerating lead vehicle ahead 
in the same lane 

• Close in on a moving vehicle ahead in the same 
lane 

• Close in on a decelerating lead vehicle ahead in 
the same lane 

• Close in on a stopped lead vehicle ahead in the 
same lane 

Crossing 
Paths 

• Right turn into path 
 

• Right turn across path 
 
• Straight crossing paths 

 
• Left turn across path, lateral 

direction 
 
 
• Left turn into path 

 
 
• Left turn across path, opposite 

direction 

• Turn right and into the same direction of 
another vehicle crossing from a lateral direction 

• Turn right and into the opposite direction of 
another vehicle crossing from a lateral direction 

• Go straight and collide with another straight 
crossing vehicle from a lateral direction 

• Turn left and cross the path of another vehicle 
traveling in the opposite direction from a lateral 
direction (left) 

• Turn left into the path of another vehicle 
traveling in the same direction from a lateral 
direction (right) 

• Turn left and cross the path of another vehicle 
traveling in the opposite direction 



Hsu 6 

 

 
Validation 
Validation is the process of evaluating the degree to which a ML model/application and its data can provide an 
accurate result of the intended uses.  Essentially, the validation of an ADAS/ADS application can be implemented 
after the verification of its training dataset that reveals the coverage and distribution across the spectrum of ODD 
and pre-crash scenarios.  Depending on the design specification of a safety function, the validation tests can be 
conducted focusing on the selected ODD and pre-crash scenarios.  Also, validation test procedures can be designed 
based on the historical crash data.  High crash frequency scenarios may be tested with a higher priority and number 
of test runs.  Well-design test procedures should be able to address safety concerns including rare critical situations, 
unreliable confidence information of DNN output, and brittleness of DNNs [10].  An ADAS/ADS safety 
functionality consists of software and hardware working together to achieve the goal of crash avoidance.  The DNN 
is a part of software processing images from sensors (cameras) and generates the detection results.  The uncertainty 
of a DNN output and the risk of hardware glitches result in the safety performance of a vehicle under test.  Broken 
sensors or alarming devices result in no alarm that can be easily distinguish from software malfunctions in a few test 
runs.  A vehicle-level test is feasible to validate the DNN of a safety application excluding the hardware failure.  
Safety metrics for evaluating the DNN performance also need to include the response time in addition to the 
pass/fail metric.  Sufficient test runs are needed to collect data for calculating the reaction time and figuring out the 
boundary or capability of the DNN under test.  The flowchart of validating a ML safety application is shown in 
Figure 2.                                 
    

VERIFICATION OF TRAINING DATA  
 
In consideration of selecting an ADAS/ADS safety application for the proposed methodology, the pedestrian crash 
avoidance is appropriate for a sensible reason.  Pedestrian detection approaches are feature-based or ML-based or 
hybrid using different image processing algorithms [22, 23, 24].  Vehicle detections may use sensors such as lidar 
and radar along with cameras to provide inputs to the detection software, but the pedestrian detection mostly relies 
on cameras.  The rationale is when the training dataset containing pedestrians in the specified ODD conditions and 
scenarios, the DNN may be able to detect the pedestrian at risk successfully.  By inspecting the training dataset in 
line with the proposed verification process, the boundaries or limitations of pedestrian detection can be identified.                          
           
Safety Functionality Requirements 
Pedestrian Automatic Emergency Braking (PAEB) is a safety function of ADAS.  A PAEB system consists of 
cameras, Forward Collision Warning (FCW), and last moment automatic braking to prevent a collision with  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The process flow of validating an ADAS/ADS functionality with ML applications. 
 

Review the design specification of an ADAS/ADS safety functionality 

Specify the target objects of detection in the Operation Design Domain (ODD) 
and pre-crash scenarios 

Design test procedures based on the specified ODD and pre-crash scenarios 

Conduct a sufficient number of tests and record the test results 

Evaluate the test results based on specified metrics    
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pedestrians.  FCW can be used as an indicator of whether a pedestrian at risk is detected or not.  FCW is designed to 
warn the driver to maneuver or brake as early as possible.                              
 
Detection Object in Operation Design Domain 
The pedestrian detection is to identify humans in the environment where the subject vehicle is traveling with 
potential collision risks.  After reviewing the ODD conditions as listed in Table 1, roadway types, weather, 
particulate matter, and illumination are directly related to the performance of pedestrian detections.  Most 
pedestrians appear at intersections, arterials, and parking lots in urban areas, less may be seen on all types of 
roadways in rural areas.  Verifying the roadway distribution of pedestrian images can be beneficial to understating 
the background of the training dataset.  Although the pedestrian detection capability and performance may not be 
correlated to the background of road types, such information can be used for the design of edge test scenarios.  For 
example, a pedestrian is walking on the freeway shoulder.                  
 
Detection Objects in Pre-crash Scenarios 
Two pre-crash scenarios of pedestrians are considered in Table 2 that the subject vehicle is maneuvering or not.  
When a vehicle is making a turn at an intersection where pedestrians are crossing, the viewing angle from the 
subject vehicle to a crossing pedestrian is changing in the process of turning.  Ideally, the training dataset is expected 
to contain a variety of pedestrian profiles from various viewing angles.           
 
Verification of Training Datasets 
Eight pedestrian datasets are reviewed as listed in Table 3.  The publication year, number of images, number of 
pedestrians, image resolution, pedestrian annotation (labeling), camera setup, and data collection areas reveal the 
background information of each dataset.  The recent published datasets are reviewed since 2010 for aged pedestrian 
datasets may not have the sufficient quantity, resolution, and annotation to be used for training recent pedestrian 
detectors.  One dataset labeled pedestrian images as the full, part, or just head of a pedestrian depending on the level 
of occlusion.  Most datasets had a camera installed on the vehicle recording videos of pedestrians, two datasets 
collected pedestrians or human images from internet sources.  The data collection area provides the information of 
where the pedestrian images were obtained.                   
 

Table 3. Dataset characteristics 
 
Dataset Year # Image  #Pedestrian Resolution Annotation   Setup  Area 
Caltech [25] 2010 250k 289k 640*480 Full, body Vehicle LA 

metropolitan 
KITTI [26] 2012 15k 9k 1240*376 Full Vehicle Mid-size city, 

rural areas 
CityPersons 
[27] 

2017 5k 35k 2048*1024 Full, body Vehicle 27 cities, 
Germany 

CrowdHuman 
[28] 

2018 24k 552k - Full, body, 
head 

Internet 
images  

40 cities 
worldwide 

NightOwls 
[29] 

2018 281k 56k 1024*640 Full Vehicle 7 cities, 3 
countries in 
Europe 

EuroCity [30] 2019 47k 219k 1920*1024 Full Vehicle 31 cities, 12 
countries in 
Europe 

TJU-DHD [31] 2020 75k 373k 1624*1200 
2560*1440 

Full, body Vehicle, 
phone 

Road, off road 
(campus) 

WiderPerson 
[32] 

2020 13k 39k 1400*800 Full Internet 
images 

 

 
Table 4 lists the verification result of pedestrian datasets based on the ODD conditions and pre-crash scenarios.  
Ideally, the dataset verification process should have a labeling tool that is able to identify the ODD’s 
condition/category and pre-crash scenario.  However, such a tool is not available currently and the manual labeling 
of thousands of images is a huge task.  The developers of ML pedestrian detection algorithms are expected to verify 
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their training datasets with the consideration of ODD conditions and pre-crash scenarios.  The review of datasets in 
this paper is based on the revealed information from the dataset publications.  Three datasets contain raining weather 
conditions, but no dataset mentioned images collected during snowing days.  Snow, fog, or smoke images are not 
available in all datasets, for such conditions may be rare during the data collection period and were not mentioned in 
the publications.  The headlight condition is not addressed in all datasets, the 3 datasets containing pedestrians at 
night did not annotate the vehicle’s headlights as low or high beam.  When the data collection vehicle was traveling 
at night, it would be a reasonable inference that both low and high beams had been used.  As for the pre-crash 
scenarios as the subject vehicle is maneuvering or not, it is most likely the vehicle had been making turns, changing 
lanes, and keeping straight with one or more pedestrians ahead in the period of data collection.                         
 

Table 4. Review of datasets based on ODD and pre-crash scenarios 
 
Condition Category Dataset 

Caltech KITTI CityPer
sons 

Crowd
Human 

Night
Owls 

Euro
City 

TJU-
DHD 

Wider
Person 

Roadway Intersection 
   

Arterial 
   

Weather Sunny/cloudy 
   

Rain     
  

 

Snow         
Particulate 
Matter 

Fog/Smoke/Dust         

Illumination Day 
 

 
  

Night streetlight     
  

 

Headlight low 
beam 

        

Headlight high 
beam 

        

Maneuver Turning/changing 
lane     

 
   

 

Not 
Maneuver 

Straight 
   

 
   

 

: The dataset may contain low or high beam headlight images, but they are not identified specifically. 
: The data collection vehicle should have both pre-crash scenarios in the data collection process. 

 
VALIDATION OF SAFETY APPLICATIONS 
 
The validation process as elucidated in Figure 2 is implemented in the following.  The ML safety application is 
PAEB, and FCW uses the pedestrian detection to trigger an alarm.  Vehicle level tests of PAEB were conducted in 
2020 under the supervision of National Highway Traffic Safety Administration (NHTSA).  Eleven vehicles equipped 
with FCW in PAEB of model year 2020 from 10 manufacturers including 4 sedans, 5 SUVs, 1 minivan, and 1 
pickup truck were tested.  The validation of pedestrian detection is to test whether FCW is activated in the selected 
ODD conditions and pre-crash scenarios.         
 
Design Specifications of FCW in PAEB 
FCW’s operational speed ranges and limitations of 11 tested vehicles are collected from owner manuals and listed in 
Table 5.  Eight vehicles’ operational speeds are not higher than 50 mph, 3 of them are higher than 50 mph.  The 
lower end of operational speeds is from 3 to 7 mph.  The negative factors of vision-based pedestrian detection 
algorithms are summarized from the operational limitations listed in the owner manuals.  Just like the limitations of 
human eyes, extreme light, air, and inclement weather conditions hinder the capability of pedestrian detections.  In 
addition, the shape, movement speed, color, posture, and clothing of pedestrians are sensitive to detection results.  
Occlusions or carrying objects are negative factors to the detection accuracy, and the detectable pedestrian height is 
from 1 to 2 meter for some vehicles.  Although it is not mentioned in all owner manuals, the ideal detection can only 
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be achieved in the straight and flat road alignments.     
                     

Table 5. FCW operation speed range and limitations of tested vehicles 
 

Vehicle 
Operation 

Speed (mph) 
Low     High 

Limitations 

1 6 50 Curves, heavy fog rain, snow, dark, occlusion, glare, light variation/reflections 

2 6 50 Curves, heavy fog rain, snow, dark, occlusion, glare, light variation/reflections 

3 3 75 Not available 

4 3 62 Height:1-2 m, groups, occlusion, unusual shape, movement (running) 

5 5 45 
Not walking upright, sudden appearance, small, clothes blend into background, too 
bright or dark, inclement weather     

6 3 37 Less than 1m, carrying luggage, severe weather 

7 4 43 
Up to 50 mph for moving pedestrians, 43 mph for stationary pedestrians, snow, rain, 
fog, glare, sudden appearance, occlusion, blend into background, special clothing or 
object, tight curve 

8 6 37 
Small children, pedestrians on wheelchair/skateboard, not upright, darkness, strong 
light caused pedestrian in shadow, sudden change in brightness, occlusion, carrying 
luggage      

9 7 100 
1-2 m, in a group, next to obstacle, using umbrella, similar clothing color to 
background, carrying luggage, not upright, dark, sudden appearance, inclement 
weather, strong light from the front, dust, smoke, steam, steep up/down hill, darkness 

10 7 50 
1-2 m, abrupt appearance, not directly in front, near obstacle, occlusion, strong light, 
same color in the surrounding, oversize clothing, moving fast, not upright, pushing an 
object, inclement weather, steam, smoke, darkness, abrupt changing brightness, curve     

11 3 50 
Shorter than 0.8m, clothing covering body contour, poor background contrast, carrying 
a large object   

 
ODD and Pre-crash Scenarios of Pedestrian Detection Tests 
The test ODD conditions and pre-crash scenarios can be specified after reviewing the limitations of vehicles under 
test.  A test process may start from easy or most common ODD conditions and pre-crash scenarios, then increase the 
difficulty level gradually depending on the testing requirements.  Light conditions and pedestrian movement 
orientations are two major test variables including day and night under low and high beams, crossing from the 
nearside or offside, or walking toward/backward in front of the vehicle.  The selected NHTSA test scenarios [33] 
are:  

• S1b: the vehicle encounters a crossing adult from the nearside (closest to the curb) 
• S1e: the vehicle encounters a crossing adult running from the offside (closest to the center of the road) 
• S4a: the vehicle encounters a stationary adult on the nearside of the road facing away 
• S4c: the vehicle encounters an adult on the nearside of the road walking in the same direction 

These 4 test scenarios have both day and night test results for the validation.  
 
Test Procedures 
A test pedestrian mannequin with swinging arms is used to simulate an adult pedestrian whose speed and direction 
can be controlled.  The vehicle under test is driven at the specified speed approaching the test mannequin moving in 
the orientation as defined in the test scenarios.  The test site has no overhead signs or other significant structures to 
cause occlusions.  Each trial was conducted without other vehicles, obstructions, or stationary objects within one 
lane width on either side of the driving lane.  All tests are conducted without inclement weather conditions such as 
fog, smoke, or ash.  Also, the daytime tests were conducted with good visibility without direct sunlight or glare. The 
nighttime tests were conducted without streetlighting.  The speeds and orientations of the test vehicle and pedestrian 
are listed in Table 6.     
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Table 6. Vehicle and pedestrian speeds and orientations under tests 

 
Test Scenario Vehicle Speed (kph) Pedestrian Speed (kph) Pedestrian Orientation 

S1b 40 5 Crossing nearside 
S1e 40 8 Crossing offside 
S4a 40 0 Stationary facing away 
S4c 40 5 Walking away 

  
Evaluation of Test Results  
The accuracy of pedestrian detections depends on various limitation factors as elucidated in Table 5.  The test 
scenarios are designed to exclude most unfavorable factors and focus on the most common ODD conditions and pre-
crash scenarios.  The pedestrian profile or shape can be different from the camera’s viewing angle in the daytime or 
nighttime.  The low or high beam light is the major source of light on the test pedestrian.  The performance of 
pedestrian detections can be validated by comparing the detection results.  The statistical test — Fisher’s exact test 
[34] is used to evaluate whether the pedestrian detection algorithm is independent of a pedestrian’s crossing or not 
under 3 light conditions.  In other words, the test is to find out whether the detection algorithm’s performance is the 
same under various profile conditions.  The null hypothesis is that the pedestrian detection algorithm is independent 
of the test pedestrian’s profile.  A two-tale P value is used to determine whether the null hypothesis can be rejected 
or not.  When the P value is greater than the significance level (α) 0.05, there is no evidence to reject the null 
hypothesis.  The independence means the pedestrian detection algorithm behaves similarly when the pedestrian’s 
profile varies.  Alternatively, the detection algorithm behaves differently when the pedestrian’s profile varies.  
Lastly, the detection time in terms of time to collision is summarized for comparing the performance of all vehicles 
under test.                
              

Crossing versus Not Crossing  Test scenarios S1b and S1e are crossing pedestrians from the nearside or offside, 
and test scenarios S4a and S4c are not crossing pedestrians but walking or standing in front of the vehicle under 
test.  The test results of FCW are either a warning activated or not.  The totals of warnings and no warnings for 
crossing and not crossing scenarios in the daytime are listed for each vehicle under test in Table 7.  Fisher’s exact 
tests are also conducted to evaluate the pedestrian detection of each vehicle.  Most vehicles are able to detect the 
test pedestrian consistently whether it is crossing or not.  Vehicles 4, 5, and 7 under test behaved inconsistently 
when they are detecting the test pedestrian in different orientations.                  
 

Table 7. Validation of pedestrian detection for crossing and not crossing scenarios in daytime 
 
Vehicle Crossing  Not Crossing Fisher’s Test 

Warning No 
Warning 

Warning No 
Warning 

P Value Null Hypothesis 

V1 11 0 10 0 1 Not reject 
V2 7 1 8 0 1 Not reject 
V3 8 0 5 0 1 Not reject 
V4 0 6 6 0 0.002 Reject 
V5 10 0 4 4 0.023 Reject 
V6 8 1 10 0 0.474 Not reject 
V7 11 0 1 4 0.003 Reject 
V8 10 0 8 0 1 Not reject 
V9 11 0 10 0 1 Not reject 
V10 10 0 10 0 1 Not reject 
V11 10 0 6 0 1 Not reject 
 
The totals of warnings and no warnings for crossing and not crossing scenarios in the nighttime (low beam) are 
listed for each vehicle under test in Table 8.  Fisher’s exact test result shows only vehicle 5 did not behave 
consistently when detecting the test pedestrian crossing or not.  However, the variations of warnings and no 
warnings increase as compared to the daytime test results.      
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     Table 8. Validation of pedestrian detection for crossing and not crossing scenarios in nighttime (low beam) 
 

Vehicle Crossing  Not Crossing Fisher’s Test 
Warning No 

Warning 
Warning No 

Warning 
P Value Null Hypothesis 

V1 8 0 10 0 1 Not reject 
V2 3 3 5 1 0.546 Not reject 
V3 3 3 6 0 0.182 Not reject 
V4 0 7 4 3 0.07 Not reject 
V5 8 0 0 4 0.002 Reject 
V6 0 6 0 5 1 Not reject 
V7 11 0 3 1 0.267 Not reject 
V8 0 5 0 6 1 Not reject 
V9 8 0 6 0 1 Not reject 
V10 10 0 10 0 1 Not reject 
V11 3 3 4 3 1 Not reject 
 
The totals of warnings and no warnings for crossing and not crossing scenarios in the nighttime (high beam) are 
listed for each vehicle under test in Table 9.  Fisher’s exact test result shows 3 vehicles (4, 5, and 8) did not 
behave consistently when detecting the test pedestrian crossing or not.  The test results are similar to the daytime 
test results.   
 

     Table 9. Validation of pedestrian detection for crossing and not crossing scenarios in nighttime (high beam) 
 
Vehicle Crossing Not Crossing Fisher’s Test 

Warning No 
Warning 

Warning No 
Warning 

P Value Null Hypothesis 

V1 7 0 8 0 1 Not reject 
V2 9 0 6 0 1 Not reject 
V3 11 0 10 0 1 Not reject 
V4 0 6 5 1 0.015 Reject 
V5 10 0 3 4 0.015 Reject 
V6 0 5 5 3 0.075 Not reject 
V7 10 0 11 0 1 Not reject 
V8 5 5 0 7 0.044 Reject 
V9 10 0 10 0 1 Not reject 
V10 9 1 10 0 1 Not reject 
V11 8 0 12 0 1 Not reject 
 
Only vehicle 5 is not able to detect the test pedestrian consistently under crossing or not crossing conditions in 
daytime, nighttime with low beam, and nighttime with high beam.   
 
Detection Time  Table 10 shows the detection times of all vehicles under test in 4 test scenarios and 3 light 
conditions.  In the daytime, the average detection times of vehicles 1, 2, 6, 8, 9, 10, and 11 are longer when the 
test pedestrian is not crossing.  In the nighttime (low beam), the average detection times of vehicles 2 and 10 are 
longer when the test pedestrian is not crossing.  In the nighttime (high beam), the detection times of vehicles 3, 7, 
9, 10 and 11 are longer when the test pedestrian is not crossing.  On average, the vehicles under test take a longer 
time to detect the test pedestrian when it is not crossing.        
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Table 10. Averages of FCW detection times of vehicles under test 
 
Vehicle Day Night (low beam) Night (high beam) 

S1b S1e S4a S4c S1b S1e S4a S4c S1b S1e S4a S4c 
V1 1.16 0.66 1.27 1.66 1.07 0.63 1.07 1.37 1.22 0.56 1.07 1.64 
V2 0.40 1.14 2.04 2.11 0.61 0.30 0.78 0.73 1.58 1.09 0.79 0.33 
V3 1.53 1.07 0.66 1.64 * 1.06 0.66 1.21 1.42 1.26 1.49 1.47 
V4 * * 1.95 2.26 * * 1.95 0.63 * * 1.54 2.48 
V5 1.10 0.92 0.91 0.35 0.97 0.77 * * 1.02 0.76 * 1.57 
V6 1.09 1.15 1.42 1.68 * * * * * * * 1.70 
V7 0.76 0.9 1.12 * 0.84 0.93 * 0.34 0.78 0.89 2.08 1.64 
V8 1.53 1.43 1.07 1.75 * * * * 1.64 * * * 
V9 1.48 1.47 2.66 2.57 0.97 0.75 0.85 1.19 1.30 0.69 1.63 2.10 
V10 1.88 1.10 2.23 2.27 1.41 1.08 2.23 2.28 1.71 0.93 2.25 2.28 
V11 1.65 1.29 2.04 1.84 0.18 0.06 * 0.38 1.54 1.25 2.01 2.09 
Average 1.26 1.11 1.64 1.81 0.86 0.70 1.27 1.02 1.36 0.93 1.61 1.73 
*: no data.  Unit: second.  
 

CONCLUSIONS 
The verification and validation methodology of ML applications for safety functionalities in ADAS/ADS is 
presented, and an example of FCW in PAEB is demonstrated.  The verification of training data provides insights and 
potential weaknesses of a ML application from the safety perspective in terms of ODD conditions and pre-crash 
scenarios.  Most current pedestrian datasets are lack of inclement weather, weak illumination, air particulate matter, 
and vehicle/pedestrian maneuvering annotations.  The validation process follows the lead of the verification result 
that the vehicle’s headlight and background illumination conditions are needed to be tested under different 
pedestrian pre-crash scenarios.  The test results show that some vehicles under test behave inconsistently when the 
test pedestrian is crossing as compared to not crossing.  Test results in the nighttime with high beam headlight is 
similar to that of the daytime; however, the test results in the nighttime show significant variations compared with 
that of daytime.  No trend or similarity can be found among all vehicles under test, the same vehicle may behave 
inconsistently under different light conditions and pedestrian orientations.  Also, the pedestrian detection time is 
longer when the test pedestrian is not crossing on average.  The vision-based ML application for the vehicle safety 
functionality reveals the uncertainty of a DNN, and it results in the inconsistent performance under differentiated 
ODD conditions and pre-scenarios.                            
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