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ABSTRACT  

Research Question/Objective: This study aims to construct a long short-term memory (LSTM) model of the vehicle 

control system for automated driving systems (ADSs) that does not cause annoyance or distrust. Furthermore, this 

study investigates the effect of LSTM hyperparameters on model accuracy. A survey showed that certain drivers 

did not use levels 1 and 2 of the ADS function because they were annoyed with the driving behavior of the ADS-

controlled vehicle. Although the driving behavior of the ADS-controlled vehicle causes distrust in passengers, it 

cannot effectively enable safe driving. This study focuses on a novel vehicle control method that reduces 

annoyance and distrust in passengers and contributes to the safe operation of ADSs. These control methods involve 

the application of a long short-term memory (LSTM) model that learns long-term time-series data. This system 

enables the construction of ADS control algorithms from LSTM models based on personalized driver operations 

during ordinary driving.  

Methods and Data Sources: LSTM models were constructed for highway driving in the following three driving 

scenarios. Scenario-1: following a preceding vehicle, Scenario-2: passing a preceding vehicle at low speed with 

lane change, Scenario-3: a sudden lane change by a vehicle in the passing lane in front of the vehicle. The effect 

of LSTM hyperparameters on the accuracy of the LSTM model was investigated for each driving scene. The data 

of these models were sourced from an experiment using a driving simulator conducted to determine driver behavior.  

Results: The results verified the accuracy of the model that simulated the driving operation of the driver. The model 

accuracy was improved by setting LSTM hyperparameters. In Scenario-1, the number of units, learning rate, and 

the number of epochs affected the coefficient of determination. The coefficient of determination tends to be 

particularly high for a large number of units. In Scenario-2, unlike Scenario-1, a large number of units was not 

required to obtain a high coefficient of determination. The coefficient of determination did not change with the 

epoch. In Scenario-3, similar to Scenario-1, the number of units, learning rate, and epoch affected the coefficient 

of determination, whereas the coefficient of determination decreased at epochs above 800.  

Discussion and Limitations: In each scenario, the hyperparameters affecting the accuracy were different. A 

limitation of this study is that it focuses on the driver model. The LSTM model applying ADS was evaluated.  

Conclusions: For the ADS control algorithm (SAE Levels 3, 4, and 5), we constructed LSTM models that reflect 

the characteristics of personalized drivers. The results showed that the LSTM hyperparameters affecting the 
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coefficient of determination tended to differ among different scenarios. In the future, evaluation of the effectiveness 

of the LSTM model when applied to ADS is necessary. Novel control systems for ADS with LSTM models 

contribute to the development of ADS system design. 

 

INTRODUCTION 

In recent years, vehicles that use automated driving systems (ADSs) and other automated driving technologies 

have become increasingly popular. According to a survey of the global market for ADSs, the number of vehicles 

equipped with advanced driver assistance systems (ADAS)/ADS is expected to reach 79,153,000 units by 2030 

[1]. Although ADS contributes to reducing a driver's driving burden by replacing the driver and improving safety, 

there are potential problems that need to be solved in the future. According to a survey of driver feelings regarding 

ADAS functions widely used currently, more than 54% of those who own ADAS-equipped vehicles believe that 

ADAS functions conversely increase the possibility of accidents, and 70% of drivers have turned off ADAS 

functions [2]. The cause is attributed to the low personal adaptability of the system to each driver that significantly 

affects the function unacceptability [3][4]. This distrust of the ADAS can also be applied to ADS. For example, 

when following a preceding vehicle, the driver may be annoyed by the system's frequent acceleration and 

deceleration despite a sufficient distance, or the driver may distrust the system when the system does not make 

such a decision even though the preceding vehicle may be traveling at a low speed, and the driver intends to 

overtake it. To solve these problems, considering personal adaptability in automatic driving control systems is 

necessary [5][6]. The purpose of this study is to develop a long short-term memory (LSTM) model of the vehicle 

control system for ADS that does not cause annoyance or distrust and to investigate the effect of LSTM 

hyperparameters on model accuracy. Therefore, we propose an algorithm for a new personalized vehicle control 

system that contributes to safe driving for ADS, and we use a driver model based on LSTM to construct this system. 

Two methods are available for constructing driver models. The first method constructs driver models 

corresponding to various driving scenarios by modeling the driver's driving behaviors, such as cognition, decision-

making, and operation. The second method involves constructing and integrating driver operation models that fit 

each driving scenario. The second method integrates several driver operation models that are constructed for each 

driving scenario. Driving scenarios include free driving, following, lane change, and merging. Operational models 

are easier to construct than cognitive and assessment models, and numerous previous studies have been conducted 

[7][8][9]. In addition, by limiting the target driving scenario, the driver's cognitive information can be identified. 

In this study, driver models were constructed using the latter method. In this study, several personalized driver 

models were developed to demonstrate their feasibility of constructing personalized models. The driving scenarios 

targeted in this study include car-following, overtaking, and cut-in behaviors. In modeling each scenario, the effect 

of the LSTM hyperparameters on accuracy was investigated. 

 

METHODOLOGY 

Driving Experiment Using a Driving Simulator 

Driving experiments were conducted using a driving simulator (DS) to obtain data regarding a driver's ordinary 

driving behavior. The experiment was conducted using a DS, as shown in Figure 1. A six-axis sway device 
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equipped with electric actuators was used to simulate the sensation of driving a DS. The six-axis sway device can 

simulate the pitch motion caused by the driver's gas pedal and brake operations and the roll motion caused by the 

steering operation. The upper part of the six-axis sway device includes a turntable that can rotate ±180° and 

simulate yaw motion. The screen is cylindrical with a radius of 2.5 m, and six projectors are used to simulate the 

traffic scene in all directions. The experiment was conducted on five male participants in their 20s (average age: 

21 years). The experimental conditions include three driving scenarios: car-following, overtaking, and cut-in. The 

participants were informed to drive under each condition as they typically do, to obtain their driving characteristics. 

All these scenarios were simulated in an environment similar to a standard Japanese highway. This study was 

approved by the Ethics Committee of the Shibaura Institute of Technology.  

 

Figure 1. Driving Simulator. 

 

Car-following Scenario 

An overview of the car-following scenario is shown in Figure 2. In Figure 2, the red, blue, and black vehicles 

represent the ego, preceding, and other vehicles, respectively. Participants boarded and drove the ego vehicle; the 

preceding vehicle traveled in front of the ego vehicle. The ego vehicle travelled at 100 km/h and followed the last 

car in a line of cars traveling at 40–60 km/h caused by a traffic accident until the congestion was cleared. Each 

scenario spanned approximately 2 min and 30 s. The drivers were asked to drive in the scenario 10 times to obtain 

the training data. During the experiment, we obtained the ego vehicle's velocity, acceleration, velocity relative to 

the preceding vehicle, and the headway distance from the preceding vehicle. Driving behaviors of the sequence of 

drivers from the beginning to the end of the journey were modeled. 
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Figure 2. Overview of the car-following scenario. 

Overtaking Scenario  

An overview of the overtaking scenario is shown in Figure 3. In Figure 3, the red, blue, and green vehicles represent 

the ego, the preceding vehicle in the travel lane, and the preceding vehicle in the overtaking lane, respectively. The 

participants boarded and drove the ego vehicle, and the preceding vehicle was placed in front of the ego vehicle. 

The green vehicle in Figure 3 travels in the passing lane at a speed of 100 km/h. The ego vehicle traveled at 100 

km/h, approached the preceding vehicle traveling at approximately 80 km/h, and decelerated eventually. The driver 

subsequently changed lanes to the overtaking lane, passed the vehicle, and changed lanes back to the original lane, 

while focusing on the vehicle in the overtaking lane. Each scenario spanned approximately 1 min and 10 s. The 

driver was asked to drive the scenario 10 times to obtain training data. In the experiment, we obtained the ego 

vehicle's steering angle, acceleration, relative velocity, and headway distance relative to the preceding vehicle and 

the relative velocity and distance relative to the vehicle in the overtaking lane. The model targeted the period 

spanning from the time the driver turned on the blinker and performed the overtaking maneuver until he returned 

to his original lane. 

 

Figure 3. Overview of the overtaking scenario. 

Cut-in Scenario  

An overview of the cut-in scenario is shown in Figure 4. In Figure 4, the red, blue, and black vehicles represent 

the ego, cut-in, and other vehicles, respectively. In this scenario, when the ego vehicle was traveling at 70–80 km/h, 

a cut-in vehicle passed it at 100 km/h from the passing lane on the right side and cut in front of it. The distance 

between the ego vehicle and the preceding vehicle in the travel lane at the time of the cut-ins was set at intervals 
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of 1 m from 7 m to 13 m. The driver was asked to run the scenario 10 times to obtain the training data. During the 

experiment, the driver acquired the ego vehicle's velocity, acceleration, relative velocity, and headway distance 

relative to the cut-in vehicle. The model targeted 5 s after the cut-in vehicle cut in. 

 

 

Figure 4. Overview of the cut-in scenario. 

 

Novel Personalized Vehicle Control System 

The proposed LSTM-based ADS control algorithm is illustrated in Figure 5. The data source stores information 

such as the relative position and relative velocity of the vehicle with respect to the road user (vehicles, pedestrians, 

bicycles, etc.) and the shape of the road on which the vehicle travels in the experiment. The data source can utilize 

a connected vehicle system, the V2X (Vehicle-to-Everything) system [10], in which information can be mutually 

obtained through communication between the vehicle, road user, and infrastructure. The lower layer of the data 

source is a scenario classification model that classifies driving scenarios. Based on the information obtained from 

the data source, the system classifies driving scenarios corresponding to the current vehicle environment and 

applies a driver model that is appropriate for that scenario. By personalizing the scenario classification model, it 

is possible to adapt it to each driver (for example, whether and when to change lanes). After classification, the 

driver model was provided with the necessary input data. As mentioned previously, these driver models were 

constructed for each driving scenario. In this study, driver models were constructed for car-following, overtaking, 

and cut-in scenarios, as an example. A personalized driver model is a position- or acceleration-based model that 

considers the driving characteristics of each driver. Because the personalized driver model outputs the vehicle 

position and acceleration/deceleration, it cannot control the vehicle directly. The control mechanism (controller) 

calculates the acceleration stroke, brake stroke, and steering amount based on the predicted data 

(acceleration/deceleration and position) output by the driver model and controls the vehicle. The calculated 

operation amounts are applied to the vehicle model to obtain the necessary information for the next control step 

that is subsequently fed back into the data source. Consequently, performing personalized ADS control 

corresponding to various time-varying driving scenarios is feasible. Based on the premise of this vehicle control 

system, we discuss the construction of a personalized driver model using LSTM. 
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Figure 5. Proposed ADS control algorithm. 

 

Method of Constructing Personalized Driver Model 

We constructed personalized driver models using LSTM. Figure 6 shows the construction flow of the personalized 

driver model. LSTM is a type of recurrent neural network that exhibits a superior processing capability for time-

series data. Figure 7 shows the personalized driver models constructed in this study. The inputs for the car-

following and cut-in models include the velocity of the ego vehicle, relative velocity, and headway distance to the 

preceding or cut-in vehicle. The inputs for the overtaking model include the steering angle of the ego vehicle, 

relative velocity, and headway distance to the preceding vehicle in the travel lane, and the relative velocity and 

headway distance to the vehicle in the overtaking lane. The output of the car-following and cut-in models is 

longitudinal acceleration. However, the outputs of the overtaking model were longitudinal and lateral accelerations 

considering the driving maneuvers. In the LSTM, the number of hidden units, initial learning rate, and number of 

epochs were set as parameters for training. Table 1 shows the parameter setting. The numbers of hidden units were 

25, 50, 100, 150, and 200. The initial learning rates were 0.001, 0.005, 0.01, 0.015, and 0.02. The number of epochs 

was 400, 600, 800, 1000, 1200, and 1400. In other words, LSTM was trained 150 times for each scenario and for 

all the participants. To ensure reasonable impact of the parameters on model accuracy, we fixed the initial values 

that were randomly output. The learning rate was set to decay by 0.999 per epoch. Data obtained from the driving 

experiments using a driving simulator were divided into 80% training data and 20% test data to construct the model. 

To confirm the feasibility of the model, a highly accurate driver model was constructed based on 150 training sets, 

and acceleration simulations were conducted. 
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Table 1. LSTM learning parameters 

Parameters Value 

Hidden units 25, 50, 100, 150, 200 

Initial learning rate 0.001, 0.005, 0.01, 0.015, 0.02 

Epochs 400, 600, 800, 1000, 1200, 1400 

 

Figure 6. Personalized driver model construction flow. 

 

 Figure 7. Personalized driver mode . 

 

Analysis Method 

To investigate the impact of LSTM hyperparameters on modeling accuracy, LSTM trained 150 scenarios and 

calculated the coefficient of determination from the test results. The formula for calculating the coefficient of 

determination is given by Equation (1). The closer the coefficient of determination is to 1, the better the model fits 

the test data and the higher the model accuracy. 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖

，
)2𝑛

𝑖=1
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           Equation (1) 

(𝑦𝑖: measured acceleration; 𝑦𝑖
′: predicted acceleration; 𝑦𝑖

′′: average value of the measured acceleration) 
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Acceleration simulations were conducted using highly accurate driver models that were constructed based on a 

study using the above coefficients of determination. Simulation results were evaluated using the root mean squared 

error (RMSE). The formula for calculating the RMSE is shown in Equation (2). The smaller the RMSE, the smaller 

the error, and the higher the prediction accuracy. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖

′)2𝑛
𝑖=1            Equation (2) 

(𝑦𝑖: measured acceleration; 𝑦𝑖
′: predicted acceleration) 

 

RESULT 

The results of the coefficients of determination for the driver model constructed with 150 hyperparameters for 

each scenario are described below. 

 

Car-following Model 

Figure 8 (a) shows a three-dimensional plot of the relationship between the average coefficient of determination 

and the hyperparameters for all participants in the car-following model. The color of the plotted points changes 

with the value of the coefficient of determination, with a yellow scheme for points closer to 1 and a blue scheme 

for points further away from 1. The larger the number of units, learning rate, and epoch, the larger the coefficient 

of determination and the more accurate the model. In particular, the coefficient of determination tended to be 

higher when the number of units was larger. However, when the number of learning epochs was high for a large 

number of units, as in the case of 200 units, 1400 epochs, and a learning rate of 0.02, the expressiveness of the 

model became exceedingly high, resulting in overlearning. Figure 8 (b) shows the model with the highest accuracy 

(lowest RMSE) from 150 training results for each participant in the experiment. The acceleration simulation results 

showed low errors with RMSE values of less than 0.1 [m/s²], and the car-following behavior could be modeled 

with high accuracy. 
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 (a) Average coefficient of determination for all participants in the car-following model. 

 

(b) RMSE values with the highest accuracy of acceleration simulation for each participant. 

Figure 8. Car-following model construction results. 

 

Overtaking Model 

Figure 9 (a) and 10 (a) show three-dimensional plots of the relationship between the average coefficient of 

determination and the hyperparameters for all participants in the longitudinal and lateral directions of the 

overtaking model, respectively. As shown in Figure 9 (a), in the longitudinal direction, the coefficient of 

determination changed significantly with changes in the number of units and learning rate; nonetheless, no specific 

trend was observed. However, the coefficient of determination did not change significantly with the number of 

epochs. In particular, a high coefficient of determination independent of epoch was obtained when the number of 

units was 150 and the learning rate was 0.02. As shown in Figure 10 (a), in the lateral direction, as in the 

longitudinal direction, the coefficient of determination was unaffected by changes in the number of epochs. Figure 
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9 (b) and 10 (b) show the model with the highest accuracy (lowest RMSE) among the results simulated from 150 

learning results. In both the longitudinal and lateral directions, Participant C exhibited a smaller RMSE for the 

simulation results, whereas Participant D exhibited a larger RMSE for the simulation results. 

 

(a) Average coefficient of determination for all participants in the overtaking model. 

 

(b) RMSE per experiment participant. 

Figure 9. RMSE values with the highest accuracy of acceleration simulation for each participant. 
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(a) Average coefficient of determination for all participants in the overtaking model (lateral). 

 

(b) RMSE values with the highest accuracy of acceleration simulation for each participant. 

Figure 10. Results of constructing an overtaking model (lateral). 

 

Cut-in Model 

Figure 11 (a) shows a three-dimensional plot of the relationship between the average coefficient of determination 

and the hyperparameters for all participants in the cut-in model. The coefficient of determination tended to increase 

with the number of units, learning rate, and epoch. In particular, stable, high coefficients of determination were 

obtained for epochs below 800. Figure 11(b) shows the model with the highest accuracy (lowest RMSE) from 150 

training results for each participant. As per the acceleration simulation results, participants B, C, and D were 

characterized by small RMSEs of 0.21, 0.17, and 0.16 [m/s²], respectively, while participants A and E were 

characterized by large error RMSEs of 0.43 and 0.39 [m/s²].  
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(a) Average coefficient of determination for all participants in the cut-in model. 

 

(b) RMSE per experiment participant. 

Figure 11. RMSE values with the highest accuracy of acceleration simulation for each participant. 

 

DISCUSSION AND LIMITATION 

The hyperparameters affecting the coefficients of determination tended to differ among the 150 modeled scenarios 

in this study. Below, we discuss the LSTM hyperparameters that affect the coefficient of determination for each 

model and the RMSE for each participant in the experiment. 

 

Car-following Model 

For the car-following model, the number of units, learning rate, and epoch affected the coefficient of determination. 

The car-following scenario in this experiment features a more complex acceleration/deceleration behavior and 
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various patterns than the overtaking and cut-in scenarios, and a large number of units are required to represent the 

driver's driving characteristics. The RMSE values were less than 0.1 [m/s²] for all participants in the experiment, 

indicating that the experiment adequately reproduced the driving behavior of individual drivers. 

 

Overtaking Model 

In the longitudinal direction, the overtaking model afforded high coefficients of determination, independent of the 

number of epochs in the case of 150 units and a learning rate of 0.02. In the lateral direction, high coefficients of 

determination were obtained independent of the number of epochs in the case of 100 or more units and a learning 

rate of 0.01 or more. The coefficient of determination does not change with the number of epochs. In machine 

learning, the accuracy of the model increases as the training progresses; however, after a certain level of training, 

the accuracy of the model decreases owing to over-training. As shown in Figure 11 (a), in one case, the accuracy 

of the cut-in model decreased at epochs above 800, owing to overlearning. As shown in Figures 9 (a) and 10 (a), 

the coefficient of determination did not change with the epoch, suggesting that the parameter set for the number 

of learning epochs was insufficient for identifying the trend. The acceleration simulation results for each participant 

in the experiment showed that participant D exhibited a slightly larger RMSE than the other participants that may 

be attributed to the fact that Participant D performed the overtaking maneuver at a different time from the other 

participants in the driving simulator experiment. The other participants in the experiment started to change lanes 

after the vehicle in the overtaking lane passed their vehicle, whereas participant D changed lanes before the vehicle 

in the overtaking lane passed his/her vehicle. In this study, the intention to begin lane change was not considered, 

and only the overtaking maneuver was targeted; therefore, the input data were not optimized. In the future, the 

scenario classification model shown in Figure 5 can be used to personalize lane-change decisions, and the accuracy 

is expected to be improved by examining the optimal driver model input.  

 

Cut-in Model 

In the cut-in model, the number of units, learning rate, and epoch affected the coefficient of determination; however, 

unlike the car-following model, the coefficient of determination decreased when the epoch was exceedingly large. 

A decrease in the coefficient of determination was observed for epochs greater than 800.  This may be because 

the driver's driving behavior in the cut-in scenario requires only braking in this study, and thus a highly accurate 

model could have been constructed even at low epochs. The results of the acceleration simulations for each 

experimental participant showed that participants B, C, and D were characterized by smaller RMSEs, while 

participants A and E were characterized by larger RMSEs. A feature of data-driven models is that their prediction 

accuracy depends on the training and test data. The reason for the large RMSE for participants A and E in the 

experiment may be that they did not have sufficient training data. Figure 12 (a) shows the average acceleration of 

the training and test data for each participant during the experiment. Figure 12(b) shows the difference between 

the average accelerations of the training and test data for each participant during the experiment. The difference in 

average acceleration between the training data and test data was large for participants A and E, indicating that the 

training data used in this study were not sufficient to cover the acceleration range of the test data.  
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(a) Average acceleration of training and test data for each participant. 

 

(b) Difference between the training and test data. 

Figure 12. Comparison of training and test data for each participant. 

A limitation of this study is that it focuses on the driver model, as shown in Figure 5. We constructed a driver 

model for following, overtaking, and cut-in. Nonetheless, there are other scenarios that need to be validated as 

well; examples include merging and driving on curved roads. In addition, in the future, we intend to evaluate the 

effectiveness of the constructed LSTM driver model when applied to the proposed ADS control algorithm. 

 

CONCLUSIONS 

For automated driving technologies such as advanced driver assistance systems (ADAS) and automated driving 

systems (ADS) to be accepted by drivers, the elimination of annoyance and distrust is important. Therefore, this 

study proposes an algorithm for a novel personalized vehicle control system for ADS. The proposed system 

includes a personalized driver model constructed using LSTM. A driver model is constructed for each driving 

scene. In this study, a driver model was constructed for car-following, overtaking, and cut-in behaviors, and the 

effect of LSTM hyperparameters on the model accuracy was investigated. The results are as follows. 
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1. For the car-following model, the number of units, learning rate, and epoch affected the coefficient of 

determination. The coefficient of determination tends to be particularly high for a large number of units. 

2. Unlike the CF model, the overtaking model does not require a large number of units for realization of a high 

coefficient of determination. The coefficient of determination did not change with the epoch. 

3. The cut-in model, similar to the car-following model, showed that the number of units, learning rate, and 

epoch affected the coefficient of determination; however, the coefficient of determination decreased at epochs 

above 800. 

 

Acceleration simulations were performed using the most accurate 150 models constructed. Highly accurate 

simulation results were obtained by optimizing the input and training data acquisition methods and the LSTM 

hyperparameters. Future evaluation of the effectiveness of the driver model when applied to the ADS is necessary. 

We expect that the new control system for ADS using the LSTM model proposed in this study will contribute to 

the development of an ADS system design. 
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