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ABSTRACT 

Technological advancements have shown the viability of Automated Driving (AD) and have created high 

expectations on its benefits – especially in terms of safety. An important step for the introduction of AD on public 

roads is providing an acceptable proof of AD’s positive risk balance compared to today’s traffic consisting of 

human-driven vehicles. Simulation of scenarios has become an essential tool for such analyses, since field 

operative tests have been shown infeasible as only means for such proof. Nonetheless, data is needed from which 

to derive human driver behavior as a reference within simulated scenarios. This paper presents an approach for 

modeling human driver behavior within defined scenarios to serve as a reference for AD.  

As a fundamental step to establish a suitable reference, we outlined the architecture of a parameterizable model 

of driver performance within crash-relevant scenarios, in which the driver model switches from a continuous 

control to a reactive behavior. The structure is based on well-established concepts like abstraction levels for the 

driving tasks, cognitive processes, and steps within information processing.  

A decision tree-like structure serves as guidance for the modularization of the driver reaction within different 

scenarios, which allows creating modules of decision-making processes as well as implementation of possible 

reactions within a scenario.  

To show the feasibility of the architecture and modules, and to demonstrate the applicability of the model, we 

conducted a driving simulator study of a scenario with a vehicle crossing from the right. Within the scenario, we 

varied the configuration of the potential crash (ego striking and borderline case) as well as apply two values of 

the available time to react. The study follows a within-subject design with 24 participants. The observed reaction 

choice, time and intensity were measured and then used to parameterize the driver model. 

Braking was the most frequently observed driver reaction, while potential crash configuration apparently 

influences the reaction choice. The observed driver behavior was in line with assumptions based on the state of 

art, which were used for the initial architecture and decision making of the developed driver model. Re-simulating 

the scenario with the parameterized model led to a similar frequency of crashes as in the simulator study.  

The experiment provided evidence that the driver model is built on reasonable assumptions for structuring the 

decision-making process and modeling dependencies between situational variables and reaction parameters. Due 

to sample characteristics such as age, the gathered parameters cannot serve as a general reference. However, it is 

not expected that a more diverse sample will disprove the assumptions for the model architecture.  

The theoretical considerations for modeling the decision-making process and its dependency on situational 

variables make apparent which complexity lies within modeling driver reactions.  

The proposed model for driver performance within crash-relevant scenarios aims to serve as a reference to prove 

the positive risk balance of AD. It provides a clear path for the establishment of a general reference model. Yet, 

the paper shows that the establishment of a baseline for all relevant scenarios comes with a tremendous effort and 

complexity.  
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OBJECTIVE 

Over the last years, Automated Driving (AD) has been one of the most prominent research topics within the 

automotive industry, which was driven by advancements in sensing technology and improved processing power. 

Many players – some of which are traditional automotive OEMs integrating AD technology in their products and 

some startups or technology companies from other fields – have been showcasing the latest stage of demonstrator 

vehicles to be operating well on public roads. Few companies (e.g., Mercedes [1]) have released SAE Level 3 

technology (see [2]), which allows automated operation within operating conditions at whose limits the driver is 

required to retake control of the vehicle. Other companies have instantiated SAE Level 4 operation, where no 

driver is required in defined areas (e.g., [3]). Still, no roll out of higher automation has been achieved at a larger 

scale. 

One challenge, which automated driving is facing, is verifying the safety of AD technology, such that it is actually 

societally acceptable to have automated vehicles on public roads. Part of this challenge lies within the question, 

what level of safety should be achieved to be societally acceptable. Some authorities, for instance in Germany [4], 

have formulated the need for AD to achieve a positive risk balance compared to human drivers. Companies like 

Waymo have formulated a reference for safety in the form of a “Non-Impaired, Eyes ON the conflict” driver [5]. 

It has been shown, that proving the positive risk balance by means of on-road testing is economically infeasible, 

as even with simplifying assumptions a number of billions of km needs to be driven [3], [4]. An alternative 

approach for proving the positive risk balance lies within a scenario-based approach, which has for instance been 

established by the German PEGASUS Project [7]. A scenario-based approach allows focusing on Verification 

and Validation (V&V) activities that are particularly relevant for safety and thus promised an overall reduction in 

the testing effort. 

Multiple definitions of the term scenario in the scope of automated driving have been proposed. A general 

overview of definitions related to scenarios for the validation and verification of automated driving systems (ADS) 

has been established in ISO 34501 [8]. It defines a scenario as the sequence of the scenes integrated with the 

ADS(s)/subject vehicle(s), and its/their interactions in the process of performing (a) certain Dynamic Driving 

Task(s).  The exact separation of abstraction layers of scenarios is less relevant for this paper. Within the following, 

we will use the term driving scenario, which was established in the scope of prospective effectiveness assessment 

in the L3Pilot project [9]: A driving scenario is a short period of driving defined by its main driving task (e.g., car 

following, lane change) or triggered by an event (e.g., an obstacle in the lane). This definition can to a large extent 

be seen synonymous to the more abstract definition of scenario category in ISO 34501: set of scenarios that 

share one or more characteristics. Scenario-based testing activities can consist of a combination of tests in open 

fields, controlled field tests and simulation-based testing. 

The challenge that comes with a scenario-based approach for verifying safety of automated driving is the need for 

representing the human driver as reference within the scenarios tested. Crash data provide a data source of driver 

reactions within defined safety-relevant scenarios, yet it needs to be noted that each accident contains only one 

driver reaction, which may represent statistical outliers of driver behavior. Moreover, the collection of accident 

data represents a tremendous effort to cover all the scenarios relevant for the safety validation of automated 

driving. Studies in simulators or controlled fields allow collecting the behavior of drivers within multiple defined 

scenarios, but the efforts associated with such studies also appear not to be economically feasible for verifying 

the safety of automated driving in completeness. An alternative lies within collecting a limited set of data on driver 

behavior and to establish a model of a driver that can be applied within simulation. Such models are referred to 

as driver performance models and can be built on scientific findings on driver behavior within safety-relevant 

situations and parameterized with data coming from various data sources. 

In the following, an approach for modeling scenario-dependent driver performance data based on findings of 

reaction patterns within crash-relevant situations will be presented. The model is aimed at providing a modular 

framework for possible driver reactions within a driving scenario. The modularization should create ease of use 

and motivate reuse of software modules modeling driver behavior. Moreover, the model should allow multiple 

reactions within a concrete driving scenario based on probability distributions. The choice of reaction, the reaction 

time and the reaction intensity should be modeled in a way to make them dependent on situational parameters of 

the driving scenario. 

RELATED WORK 

The creation of a driver performance model depends on a detailed understanding of how a driver perceives and 

processes information and executes the driving task. Though driver behavior is still subject to research and will 

continue to be for some time, there are certain findings which can be used as the basis for driver modeling. In the 

following, fundamental findings on driver behavior will be presented and then put in the context of driver 
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modeling. After that, we will focus on driver behavior modelling within crash-relevant situations, highlight 

existing models of driver performance and present relevant applications. 

Structuring the driving task 

Donges provides a fundamental structure of the driving tasks, which is not only used as reference of driver 

behavior but also as reference for the architecture of advanced driver assistant systems (ADAS) or automated 

driving systems [10]. Donges divides the driving task into three levels: navigation as the highest level, which 

comprises the selection of the correct route in either known or unknown surroundings, guidance as second level 

which includes tasks such as choosing the correct lane or executing a turning maneuver, and stabilization as the 

lowest level, which encompasses lane keeping or the control of the distance to the lead vehicle.  

Another important classification of driver behavior is the classification of goal-oriented actions by 

Rasmussen [11]. He defines three categories of behavior: Knowledge-based behavior holds actions on which a 

person must actively apply and transfer knowledge from his/her experience to a situation which he/she has not 

experienced sufficiently often before. Rule-based behavior is applied in situations that occur often and in which a 

person can directly select an action based on rules learned from experience. Skill-based behavior is used for 

activities where no conscious control process needs to be applied as the situations or activity are well known to a 

person.  

Table 1 provides a mapping between the levels of the driving tasks by Donges and Rasmussen based on [11]. 

Table 1. 

Relations between levels of driving task [10] and classification of goal-oriented behavior [12] as given in [11] 

 
Knowledge-based Rule-based Skill-based 

Navigation x   

Guidance x x x 

Stabilization   x 

 

Driver Modeling 

A first use case for driver modelling was the application within traffic flow simulation, where the focus is less on 

simulating safety-relevant scenarios as an interaction of a small number of vehicles, but rather simulating entire 

traffic networks to investigate network capacities and congestion phenomena. The primary focus for such models 

is on modelling the following behavior of drivers. Most prominent models in this field are the Intelligent Driver 

Model (IDM) [13] or the driver model by Wiedemann [14], which finds its application in different simulation 

tools. While the IDM models driver behavior by means of a differential equation whose parameters can be set to 

mimic different driver attitudes, the model by Wiedemann aims at representing driver physiological processes, 

which are based on principles of looming and unconsciously keeping a desired headway. Parameters within the 

model point directly to interpretable parameters, like desired speed, desired time gap or gap at standstill. 

More sophisticated approaches aim at modeling the driver as a complex control flow of a vehicle. Many 

approaches consider the three levels of the driving task by Donges [10], which splits driving into the navigation, 

the guidance and the stabilization layer. Klimke presents a driver model – also referred to as agent model – which 

follows these basic assumptions in its internal structure [15]. The model is intended to realize different tasks of 

maneuvers like the adaptation to a new speed limit. For this, a comprehensive architecture is presented, which 

covers all levels of the driving tasks and primary driver inputs (steering, throttle, braking), secondary inputs (e.g., 

lighting) as well as communication, and vehicle and system setup. The model was implemented as C++ class and 

published on GitHub. 

A model aimed at covering the entire driving task is presented by [16], which aims at recreating physiological 

aspects of driver information processing. The model uses a stochastic process for modeling the driver’s gaze 

behavior and some internal information processing. These may cause the model to perceive relevant information 

too late or not at all such that it may create crash-relevant situations or even crashes. This way, the model can be 

applied for effectiveness evaluation of automated driving systems, by either creating a baseline of simulated traffic 

or creating surrounding traffic for a single or multiple automated vehicles. 

Driver behavior in crash-relevant situations 

Everyday driving can be modeled as controller behavior (e.g., vehicle following and lane keeping), as for 

everyday-driving primarily skill-based or rule-based processes are of relevance. In contrast to everyday driving, 

crash-relevant situations are situations which the driver does not experience regularly. The driver needs to quickly 

select an action and implement it to avoid the collision with another object or to run off the road. The driver 
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models which focus on the driver reaction to avoid a collision in crash-relevant situations are often referred to as 

driver performance models. Erbsmehl states, that the primary parameters for modeling the driver response in the 

crash-relevant situation are the reaction time and the reaction intensity [25]. 

When reaction times are analyzed or modeled, it is important to consider how they are defined. A high-level 

classification of the relevant elements of the overall reaction time is provided by Green [17]. Green defines the 

mental processing time – which in itself consists of sensation, perception, and response selection and 

programming –, the movement time, and the device response time [17]. If for instance a driver’s reaction to a 

stimulus is observed by means of the deceleration of a vehicle, all mentioned elements of the reaction time will 

be executed until a deceleration of the vehicle can be observed. When modeling this deceleration, the device 

response time is typically not part of the driver model, but of the vehicle model. 

Multiple studies have investigated the relation between reaction time and time-to-collision (TTC). Many of those 

show a positive correlation between TTC and reaction time of a driver, e.g., [18], [19] and [20], while [21] state 

an increase in reaction time at very small TTC. Apart from reaction time, the reaction choice of the driver model 

is particularly of relevance for crash avoidance or mitigation, which is especially relevant at conflicts at 

intersections, where evasive steering is a relevant option for the driver. Multiple studies have investigated, whether 

drivers execute a same direction swerve (SDS) or an opposite direction swerve (ODS) in crossing conflicts, with 

an SDS as pictured in Figure 1. The SDS is in [18] referred to as a swerve into danger: the driver executes an 

avoidance maneuver away from the other vehicle but at the same time into the direction in which the other vehicle 

is moving. From a consideration of the kinematics of the situation, in some of these situations a collision would 

have been avoidable with higher odds by braking and steering in the other direction. Weber et al. analyze whether 

driver execute a typical standard reaction within a scenario with another vehicle crossing the driver’s path by 

means of driving simulator studies and accident analysis and found that driver’s typically perform an SDS, which 

is assumed to be caused by a reflex action [19]. In a further study, they found that the probability of a standard 

reaction increases with lower time-to-arrival (TTA) values, which can be seen equivalent to TTC. Moreover, with 

lower TTA, less drivers showed a reaction consisting only of braking [18]. 

 

 

Figure 1. Definition of same direction swerve (SDS) and opposite direction swerve (ODS) based on [20] 

Hu et al. also study driver behavior in crossing conflicts finding that an SDS-behavior is present in the scenario. 

How likely an SDS reaction is, depends, however, on the parameters of the scenarios [21] [22]. They show that 

the priority level (PL) is an important influence on the driver reaction. The PL expresses in a continuous number, 

how close one vehicle is to leaving the conflict zone before the other one enters it, as shown in Figure 2. The 

chance of an SDS, which Hu et al. consider as an irrational decision, increases with negative PL, while increased 

urgency of the reaction also increase the likelihood of an SDS. 

 

 

Figure 2. Characteristic values of the priority level (PL) as defined in [21] 
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Li et al. analyze different crash-relevant scenarios at intersections, where SDS behavior was also observed in a 

left turn across path (LTAP) scenario. Drivers executing a SDS had a significantly lower reaction time compared 

to drivers executing ODS [23]. 

Modelling evasive driving maneuvers 

Based on physiological considerations, Lee showed that the control variable for braking is the derivative of the 

time-to-collision (�̇�), which drivers keep constant within a braking maneuver [26]. Yilmaz and Warren confirm 

the findings by Lee and further study the control process of braking, in which the driver shows a non-continuous 

behavior [27]. The brake pedal pressure is kept constant for a certain time until adjusted, based on �̇�. The �̇�-theory 

by Lee [26] in combination with the finding by Yilmaz and Warren [27] can be used to model driver behavior 

within braking situations, as applied by Roesener [28], where the braking application is modeled through a 

combination of an initial open-loop reaction continued by closed-loop control behavior. 

Jurecki’s and Stanczyk’s [24] model for a straight crossing path scenario is one of the few models for modeling 

drivers' steering reactions in crash-relevant intersection scenarios. They model the steering wheel angle as a 

function of the lateral distance to the obstacle and the reaction time [18]. Their model is validated by comparing 

the modeled steering wheel trajectories with driving data from subject tests on a test track. They state that it is 

possible with their steering model to represent different driver behavior patterns using different parameterizations. 

However, a subdivision of the drivers into groups depending on their driving style is necessary [24]. A functional 

dependency of the parameters to modulate the reaction course does not seem to exist, which is why the use of 

predefined group-individual parameters is suggested [25]. 

A general statement regarding the steering behavior of drivers in crash-relevant maneuvers is given in [29]. 

According to the analyses, drivers tend to show an open-loop behavior, consisting of several, interrupted bell-

shaped steering angle corrections [29]. The assumption of open-loop steering responses in lane changes on 

highways is presented in [28] and confirmed by a comparison with a closed-loop approach as a more accurate 

modeling approach. 

Driver performance models and their application 

Although driver behavior is still to a large extent subject to research, driver performance models have been used 

in different types of prospective safety assessments. The P.E.A.R.S. consortium [25] contributed to ISO technical 

report [26] which defines a method for prospective safety assessment. Within a prospective assessment, the 

baseline scenarios are needed, in which the system under assessment is expected to increase the safety. Baseline 

approach A as defined in [26] uses real world baseline scenarios, which may be reconstructed crashes or crash 

and near-crash situations from naturalistic driving data, also referred to as cases. In approach A these scenarios 

are used directly as baseline, such that the driver reaction is taken from the real case. Approach B modifies real 

world cases, which also makes it possible to derive more than one scenario from one real world case. Approach 

C generates synthetic scenarios, which are not directly linked to real world cases but uses data from real world 

cases or other driving data, such as driver behavior for generating synthetic cases. 

While the modified scenarios are close enough to the real world for approach B, such that driver behavior in those 

cases is suitable as reference, approach C requires a driver model to produce baseline scenarios to serve as baseline 

within the prospective assessment. In [28], Fahrenkrog et al. presents a safety impact assessment study of an ADS 

for motorways which utilizes the model presented in [16]. The model uses a stochastic process for modeling the 

driver’s gaze behavior, which in addition to some internal information processing, may cause the model to 

perceive relevant information too late or not at all such that it may create crash-relevant situations or even crashes. 

This way, the model can be applied for effectiveness evaluation of automated driving systems, by either creating 

a baseline of simulated traffic and creating surrounding traffic for a single or multiple automated vehicles. Within 

traffic scenarios spanning a stretch of motorway containing many vehicles, the model is used to represent the 

mechanisms leading to crash relevant situations as well as the driver reactions in crash-relevant situations. In cases 

where the ADS avoids a collision, it is still possible that a preceding vehicle collides with a heavily decelerating 

ADS. 

Erbsmehl and Schebdat apply a simulation approach of driving scenarios with a driver performance model which 

uses distributions of reaction times and distributions of reaction intensity [29]. The model is applied in an 

assessment of a warning system. 

Roesener et al. present a study where a traffic simulation with a driver model that explicitly models causation 

mechanisms for crash-relevant situations is combined with simulations of driving scenarios, where a driver 

performance model within crash-relevant driving scenarios is used as baseline [30]. The model implements results 

from a driving simulator study on the reaction time and reaction intensity to represent reference driver behavior 

within the simulated driving scenarios. In [9], the approach applied in [28] was applied for motorway scenarios 
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and combined with a re-simulation of relevant real-world cases. For an urban ADS, the approach from [30] was 

refined and applied without the simulation of traffic scenarios.  

In [31], Roesener builds upon the method established in [30] but uses a more sophisticated driver performance 

model to simulate the impact in rear-end and cut-in scenarios. The detailed model is presented in [32] and makes 

use of the findings from [33], but models the initial driver reaction as an open loop reaction. The model for evasive 

steering was built on the finding from [34] and uses low-level open-loop steering impulses to create the closed 

loop behavior. 

Bärgman et al. perform a comparison of different driver performance models as references for the safety benefit 

of an integral safety systems [35]. One of the investigated models used a simple brake control sub-model with a 

constant jerk and the others use a linear relation between to the inverse of the optical time-to-collision, while for 

all the maximum deceleration is sampled from the same distribution. Apart from the first model, which uses no 

glance behavior model, all models use different models for the driver’s glance behavior. The simulations show 

that the choice of model can have a significant effect on the safety benefits simulated. 

Waymo present an alternative approach for modelling reaction times by implementing a belief update process in 

which the simulated driver initiates a reaction based on perceived violations to his prior belief [5]. This approach 

resolves two issues which driver performance models typically have in common. First, the update process takes 

into account an evolving traffic situation and thus allow to model the situation-dependence of the reaction time. 

Second, the modeling approach allows to define a stimulus in a scenario, even if no distinct event can be specified, 

which is only possible in controlled studies and often cannot be applied when using naturalistic data. The model 

is applied to rear-end crashes and near-crashes from the SHRP2 where the prior belief is modeled based on the 

looming principle (see [36]).  

The UN ECE Regulation for the ALKS applies the modeled driver performance of a skilled human driver for 

deriving thresholds which situations are preventable or unpreventable [37]. The driving scenarios simulated are a 

cut-in, a cut-out with a slower vehicle in front of the vehicle cutting out, and the lead vehicle decelerating. The 

driver reaction is identified by means of a risk perception time, a delay in decision and a jerk time until the 

maximum deceleration. The regulation identifies clear definitions of the stimulus within the scenario. Simulation 

results show which configurations of the driving scenarios can still be considered avoidable. 

METHOD 

Modelling driver behavior is essential when carrying out a prospective effectiveness assessment of automated 

driving technology. When baseline cases are not taken from real world cases, where real driver behavior resulted 

in the crash or crash-relevant situation, driver behavior needs to be modeled within a synthetic scenario. While 

certain approaches like [16] use holistic models where safety-relevant situations are also caused by the driver 

model (e.g., by modeling a driver’s inattentiveness), other approaches use predefined safety-relevant scenarios in 

which the opponent induces the crash-relevant situation and the vehicle under test must react to avoid a collision 

(e.g., as in [30]). 

In the latter approach, driver behavior needs to be modeled specifically within the driving scenarios under 

investigation. It thus needs to be ensured, that the model used as reference within the baseline scenarios can 

produce a sufficiently realistic reaction to the safety-relevant situation. For this, the actual action of the driver 

needs to be implemented, which may consist of an open-loop action such as an initial brake application and a 

closed-loop control action, e.g., adjusting brake pressure during the course of the reaction. Apart from modelling 

the control action, their dependence on parameters within the driving scenario needs to be modeled (e.g., drivers 

may apply a stronger initial reaction in a situation with greater urgency). Moreover, multiple different driver 

reactions may be possible within a scenario. The reaction choice of the virtual driver may be modelled 

stochastically by choosing different controller implementations, while the probabilities of the different reaction 

choices may also depend on situational parameters. It should be noted that both of the approaches for using 

synthetic driving scenarios have their strengths and weaknesses. In general, modelling driving behavior remains 

a great challenge as the inner workings of a human being during driving are complex and affected by non-driving-

related tasks. 

The vastness of driving scenarios which need to be analyzed and possible options for driver reactions within a 

driving scenario result in a great overall complexity of aspects to be modeled. It is thus beneficial to instantiate 

one central driver model consisting of multiple interconnected modules which can be parameterized individually. 

Parameterizations should be easily defined and it should be possible to store and exchange them. This enables and 

motivates the reuse of models across multiple driving scenarios.  In that way, it needs to be set for an assessment 

which modules should be used and how these should be parameterized. 
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In this work, we present a parameterizable driver model, whose architecture enables modularization and separate 

parameterization of model components, which in consequence eases reuse of model components creating a greater 

consistency across individual assessments and explainability of the model in the reporting of the setup, results and 

limitations of a prospective effectiveness evaluation. The remainder of this paper follows the following process 

steps: 

0. Design architecture for a parameterizable driver performance model * 

1. Identifications of the application of the model by 

a. Selecting a relevant driving scenario 

b. Selecting influencing scenario parameters 

c. Selecting suitable models for reaction 

2. Plan and execute driving simulator study with a defined sample of drivers 

3. Evaluate study 

a. Check if main design decisions for driver performance model are supported by study * 

b. Check if scenario parameters influence driver reaction within scenario 

4. Use study as input for parameterization of model 

a. Decide for modeling of dependencies between scenario parameters and driver reaction 

b. Derive distributions for stochastic driver reaction 

5. Re-simulate scenario of study with parameterized model 

6. Validate results using study data (ideally with test data set) 

7. Apply model within prospective safety assessment 

(The overall assessment needs to be validated as well) 

These process steps serve as structure for this paper and explain how the model were to be applied in an 

effectiveness assessment. Steps marked with asterisk (*) are only relevant for this paper's scope and need not be 

executed in an application of the model: Step 0 presents the model architecture design, which is not a task to be 

repeated per application. Step 3.a validates this structure as part of the overall presentation of the model, 

supporting the overall design decision enabling reuse of the model. Step 7 encompasses the actual application of 

the model, which is out of scope of this paper. This application should follow the guidelines established by the 

P.E.A.R.S. consortium (see [26] and [27]), which also gives guidelines for a proper validation of the assessment. 

Apart from the steps listed above, this paper presents a discussion of the model, its setup und intended use. 

DESIGN OF MODEL 

The overall model architecture consists of two main design principles: A three-dimensional modularization of the 

driving task and a decision tree realizing the driver’s reaction choice. The three dimensions along which the 

driving task is structured are: 

1. The different layers of the driving tasks as defined by Donges [10] 

2. The classification of target-oriented actions by Rasmussen [12] 

3. The information processing chain divided into perception, cognition and action 

These three dimensions of the driver reaction within crash relevant scenarios create a Rubik’s Cube-like structure 

for the model. However, not all combinations of the categories create meaningful sub-processes. Such that not all 

of the elements of the Rubik’s Cube are occupied by a software module which encapsulates physiological or 

statistical models recreating the driver behavior within a given driving scenario. The overall structure is presented 

in Figure 3. The navigation task typically only consists of knowledge-based processes, in areas where a driver 

needs to actively navigate, except for the sensory perception of environmental information, which is considered 

as a skill based-perception process. Within safety relevant scenarios, navigation is often not relevant. Only in 

special cases, additional workload by the navigation task may affect the driver’s reaction but has not yet been 

subject to extensive research. Thus, navigation is only considered for completeness. 

Skill-based processes typically do not require complex cognitive processes, such that they are modeled as 

sequences of perception and action. Skill-based reactions may be present as both, guidance, or stabilization tasks. 

Rule based actions are particularly relevant for the guidance layer as they encompass evasive maneuvers. For 

these, perception, cognition, and action are relevant processes, such that they are considered as modules within 

the driver model. 
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Figure 3. Generic architecture of the driver performance model 

The model is implemented in Python and provides empty modules within its default configuration. The model 

uses OSI [38] as input data stream from the simulation environment. The model’s output consists of the pedal 

positions and the steering wheel angle. At the time of writing, no harmonized driver model output interface 

existed, such that the output interface was implemented to suit the proprietary driver C-Struct of the simulation 

tool Virtual Test Drive by Hexagon, which was used as the tool for development and validation of the model. For 

an application these empty modules can be replaced by user-defined modules which can be set up as shown in 

Figure 4. 

def GCk(Settings, Parameters, driver, ego): 
    """Container for Guidance-Cognition-knowledge function calls""" 
    import sys 
    import os 
    generic_duplicate_path \ 
        = os.path.join(Parameters.Parameter_generic_path, \ 
            "Guidance","G_Cognition") 
            sys.path.append(generic_duplicate_path) 
    ################################## 
    # Import your functions below: 
    # 
    from cognition_stimulus_understanding \ 
        import cognition_stimulus_understanding 
    [...] 
    # Processing of perceived environment and checking for call for action 
    driver = cognition_stimulus_understanding(Parameters,driver,ego) 
    # Get reaction type: 
    driver = cognition_decision_making_module(Parameters, driver) 
    # Get reaction times: 
    driver = cognition_decision_making_reaction_times(Parameters, driver) 
    # Get reaction intensities: 
    driver = cognition_reaction_intensity(Parameters, driver) 
    [...] 
    ################################## 
    return driver 

 

Figure 4. Python skeleton implementation module of driver reaction 
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The structure presented above does not yet provide a structure for the possible driver reactions. Thus, additionally 

to the structure presented, different options for driver reactions need to be defined. For this, we structure possible 

driver reaction types – in the following called RTYPE – by means of a decision tree. The root node of the decision 

tree – the high-level RTYPE – considers whether a longitudinal (1xx) or lateral reaction (2xx) is executed or a 

combination of both (3xx). For the intervention a distinction is made, whether lateral or longitudinal acceleration 

is increased (11x resp. 21x) or decreased (12x resp. 22x), which is considered as mid-level RTYPE 

Combined reactions are more complicated since according to [39], no truly parallel reactions exist. For this, we 

consider the different combinations of increase or decrease of lateral or longitudinal acceleration (31x – 34x) and 

add whether lateral or longitudinal intervention was first initiated (e.g., 31.x-Long for an increase in longitudinal 

acceleration, followed by an increase in lateral acceleration). A further distinction can be made on the level of the 

low-level RTYPE, which considers which and how driver control units (i.e., accelerator pedal, brake pedal, 

steering wheel) were used to influence the vehicle dynamics. The definitions of the high- and mid-level RTYPES 

are given in Table 2 and a decision tree leading to these is presented in Figure 5. 

Table 2. 

Definition of reaction types (RTYPE) 

RTYPE Definition 

1xx Reaction influences longitudinal vehicle dynamics (longitudinal reaction) 

11x Increase of longitudinal acceleration 

12x Decrease of longitudinal acceleration 

2xx Reaction influences lateral vehicle dynamics (lateral reaction) 

21x Increase of lateral acceleration 

22x Decrease of lateral acceleration 

3xx Reaction influences longitudinal and lateral vehicle dynamics (combined reaction) 

31x-Long Increase of longitudinal acceleration + Increase of lateral acceleration 

31x-Lat Increase of lateral acceleration + Increase of longitudinal acceleration 

32x-Long Increase of longitudinal acceleration + Decrease of lateral acceleration 

32x-Lat Decrease of lateral acceleration + Increase of longitudinal acceleration 

33x-Long Decrease of longitudinal acceleration + Increase of lateral acceleration 

33x-Lat Increase of lateral acceleration + Decrease of longitudinal acceleration 

34x-Long Decrease of longitudinal acceleration + Decrease of lateral acceleration 

34x-Lat Decrease of lateral acceleration + Decrease of longitudinal acceleration 

4xx No reaction 

40x Unchanged vehicle dynamics 

 

The selection of the driver reaction in a single simulation run is based on a probabilistic decision tree, in which 

probabilities can be modeled in dependence of situational parameter (see example in Figure 7). The distinction 

into typical and not typical reactions refers to the finding by Weber [40]. 
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Figure 5. Decision tree-like model of the stochastic decision-making process of the driver performance model 

APPLICATION OF MODEL 

Our aim is to derive a specific driver performance model for crash-relevant urban scenarios. Following the 

previously disclosed method, we first select a logical urban scenario and identify its characteristic description 

parameters, before implementing reaction algorithms.  

Selection of scenario 

Road accident statistics from Germany of the year of 2019 show that most of the crashes reported to the police 

happen in urban areas. Especially junctions including driveways are crash prone with more than 50 % of these 

crashes happening there [41].  Research from the Intersection 2020 project [42] identifies straight crossing paths 

(SCP), left turn across path – opposite direction, and left turn across path – lateral direction as most relevant 

intersection car-to-car scenarios to focus on the enhancement of road safety at intersections. We chose to focus 

on straight crossing paths accidents with an opposing vehicle challenging from the right hand side of the ego 

vehicle (see Figure 6). 

Relevant scenario parameters 

From literature and related studies on driver behavior in crash-relevant scenarios, the time-to-collision and the 

projected crash constellation hypothetically influence the driver’s reaction. Therefore we chose the initial time-

to-conflict-point (TTCP) and the initial priority level (PL) as the two variables for our model. The start of the 

crash-relevant scenario is defined by the object vehicle becoming visible after being obstructed by a vehicle 

(Figure 11). Both values are measured at the time when the object vehicle becomes visible from the view point of 

the ego vehicle. The TTCP is calculated by the distance to conflict point (DTCP) and the current velocity of the 

ego vehicle. The PL is calculated by the following equations: 
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For 𝑇𝑇𝐶𝑃𝑂𝑏𝑗 − 𝑇𝑇𝐶𝑃𝐸𝑔𝑜 < 0 : 𝑃𝐿 =
𝑇𝑇𝐶𝑃𝑂𝑏𝑗 − 𝑇𝑇𝐶𝑃𝐸𝑔𝑜

𝑇𝑇𝐶𝑃𝑂𝑏𝑗,𝑒𝑥𝑖𝑡 − 𝑇𝑇𝐶𝑃𝑂𝑏𝑗

 Equation (1) 

   

For 𝑇𝑇𝐶𝑃𝑂𝑏𝑗 − 𝑇𝑇𝐶𝑃𝐸𝑔𝑜 > 0 : 𝑃𝐿 =
𝑇𝑇𝐶𝑃𝑂𝑏𝑗 − 𝑇𝑇𝐶𝑃𝐸𝑔𝑜

𝑇𝑇𝐶𝑃𝐸𝑔𝑜,𝑒𝑥𝑖𝑡 − 𝑇𝑇𝐶𝑃𝐸𝑔𝑜

 Equation (2) 

   

For 𝑇𝑇𝐶𝑃𝑂𝑏𝑗 − 𝑇𝑇𝐶𝑃𝐸𝑔𝑜 = 0 : 𝑃𝐿 = 0 Equation (3) 

 

 

 

Figure 6. Description of the conflict  

Implementation of model reactions 

The process of human perception is modelled in a very simplified and ideal way in our driver performance model. 

Calculations required on the software side in relation to the perception of the environment are also assigned to the 

modules of perception. The perception process (incl. recognition) of the driver performance model consists of the 

detection of objects, the verification of the visibility of the objects, the computation of the scenario description 

variables TTCP and PL and the verification whether the visible object generates a request for action. To determine 

a reference time for the driver reaction, it is necessary on the software side to detect the time of occurrence of a 

perceptible crash-relevant situation. For this purpose, in the case of a suddenly appearing object, the earliest 

possible time is determined from which a point of the object would be visible to a driver without occlusion. The 

perception functions are distributed over the modules SPs, GPs, GPk and GCk (see Figure 3). 

The reaction choice is modelled by the decision tree presented in Figure 5. The likelihood of a reaction choice 

depends on the scenario parameters TTCP and PL (see Table 7). The decision tree is located in module GCk. 

For the reaction times, a dependency on the urgency of the scenario and the reaction type is considered. The 

reaction times are modeled by a truncated normal distribution around the mean of the measured reaction times of 

a driver population. For reaction times, 0 s or, for second reactions, the reaction time of the first reaction is set as 

the lower limit and the normal distribution is truncated accordingly. Reaction times are control unit specific and 

stochastically determined when simulating the driver performance model. 

Driver responses to the steering wheel and pedals are modeled by reaction models from the literature, which are 

then fitted and parameterized to the data from our driving simulator study. For reaction intensity, we formed five 

discrete groups of reaction intensities for accelerator pedal actuation, braking, and steering: very low, low, 

medium, high, very high. For each reaction intensity, we parameterized the respective models with corresponding 

data from the study that are in the respective reaction intensity group. A reaction intensity is then stochastically 

determined specifically for the actuator when simulating the driver performance model and depends on the 

reaction time. The determination of a reaction intensity and reaction time is located in module GCk. 

Regarding the modelling of the brake pedal stroke in crash-relevant situations, the results from [32] show that the 

assumption of an open-loop action of the driver provides good results. Based on this, we also model the 

longitudinal responses (step on the accelerator pedal or braking) by an open-loop response. The step on a (brake) 

pedal is modeled by the first-order transfer response of a system. During the simulation, the pedal position y at 

time n+1 is calculated discretely in time, considering the size of the time step dt, the parameters T and K, and the 

command variable u according to Equation (4).  
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𝑦𝑛+1 = (1 −
𝑑𝑡

𝑇
) ⋅ 𝑦𝑛 + 𝐾 ⋅ (

𝑑𝑡

𝑇
) ⋅ 𝑢𝑛 Equation (4) 

For modelling the steering reaction of the drivers, we use an adapted formula based on the steering model of 

Jurecki [24]. Due to unsatisfactory results when fitting the model to the measurement data of the driving simulator 

study explained later, we extended the calculation formula by one term. This term is equivalent to an open-loop 

steering response, which is only time-dependent and not dependent on the lateral distance to the object. This 

extension goes along with the results from [43], according to which steering reactions are open-loop reactions. 

The adapted calculation formula can be found in Equation (5), where the parameter K6 and the command 

variable u are introduced, which can be used to directly parameterize the maximum steering wheel angle (the 

reaction strength) during the steering reaction. The first two terms of Equation (5) resemble the discrete-time 

transfer behavior of a first-order system. The third term establishes a dependency of the steering wheel angle δsw 

on the lateral distance to the object and – by limiting ylat,rel – influences only the steering angle retraction.  

𝛿𝑠𝑤,𝑛+1 = ((1 −
𝑑𝑡

𝑊4

) ⋅ 𝛿𝑠𝑤,𝑛 ⋅
𝜋

180
+ 𝐾6 ⋅ (

𝑑𝑡

𝑊4

) ⋅ 𝑢𝑛 + 𝑊5 ⋅ (
𝑑𝑡

𝑊4
) ⋅ 𝑦𝑙𝑎𝑡,𝑟𝑒𝑙,𝑛) ⋅

180

𝜋
 Equation (5) 

with 𝑦𝑙𝑎𝑡,𝑟𝑒𝑙 = (𝑦𝑝𝑜𝑠,𝑜𝑏𝑗 − 𝑦𝑝𝑜𝑠,𝑒𝑔𝑜) + 𝑦𝑜𝑓𝑓𝑠𝑒𝑡 Equation (6) 

𝑦𝑙𝑎𝑡,𝑟𝑒𝑙 = max (0, 𝑦𝑙𝑎𝑡,𝑟𝑒𝑙) Equation (7) 

𝑦𝑙𝑎𝑡,𝑟𝑒𝑙 = 𝑚𝑖𝑛 (0, 𝑦𝑙𝑎𝑡,𝑟𝑒𝑙) Equation (8) 

 

The steering and pedal reactions are implemented in the module SAs. 

The parameterization of the driver reaction can be achieved using probabilistic trees in a JSON file as presented 

in Figure 7. 

"node_on_reaction": { 
    "required": ["branches", "weights"], 
    "properties": { 
        "branches": ["typical_reaction", "untypical_reaction"], 
        "weights": {                                        
            "independent_var": { 
                "name": "ttcp",     
                "val": [1.43,2.10]                                           
            }, 
            "weights_branch_typical_reaction": [22,24], 
            "weights_branch_untypical_reaction": [2,0]                              
        } 
    }, 
    "node_on_typical_reaction": { 
        "required": ["branches", "weights"], 
        "properties": { 
            "branches": ["long", "lat"], 
            "weights": { 
                "independent_var": { 
                    "name": "ttcp",     
                    "val": [1.43,2.10]                                           
                }, 
                "weights_branch_long": [22,22], 
                "weights_branch_lat": [0,2] 
            }                                         
        } 
    }, 
    ... 
} 
 

Figure 7. JSON-Example for parameterization of driver reaction 



 Weber 13 

SIMULATOR STUDY TO PROVE BASIC ASSUMPTIONS AND FOR PARAMETERIZATION 

In the summer of 2020, we conducted a driver simulator study to proof the general assumptions on which the 

decision tree-like structure of the driver performance model is built up on and for the parametrization of the model. 

In general, the driver simulator study is utilized to answer the following research questions: 

RQ1: How do drivers react in a crash-relevant intersection scenario where another vehicle crosses the first-person 

path from the right? 

From literature research, we learned about reactions drivers show in crash-relevant scenarios. Therefore, we aim 

to answer the research question, whether the drivers show hypothetical typical first reactions. In our selected 

straight crossing path scenario at an intersection, these hypothetical typical first reactions are braking or a same 

direction swerving as steering reaction. In brief, the RQ2 and related hypothesis are: 

RQ2: Do human drivers show typical first reactions? 

Furthermore, we want to observe whether the scenario description parameters TTCP and PL influence the driver’s 

reaction choice. For that, we formulate RQ3 and related hypothesis 2.1 and 2.2 as follows: 

RQ3: Does the frequency distribution of the reaction types change when the TTCP or the PL are changed? 

Hypothesis 3.1) There is a difference in frequency distributions of response types when the PL is changed. 

Hypothesis 3.2) There is a difference in frequency distributions of response types when the TTCP is changed. 

The driving simulator study was conducted in a static driving simulator with a 360° screen surrounding the ego 

vehicle at fka GmbH / the Institute of Automotive Engineering (ika). We invited 25 volunteers to join our study. 

One participant aborted the study after the test drive due to simulator sickness. Therefore, 24 valid data sets were 

obtained. Due to the Covid-19 pandemic, the participant pool was limited to employees of ika. Participants did 

thus not receive compensation for taking part in the study. The study took about 45 minutes to complete. 

Of all 24 participants, three were female and 21 male, with a mean age of 27 years (SD=4.63; range: 20 to 37 

years). On average, the participants obtained their driver's license 9.5 years ago and drove 8,290 km in the last 

year (SD=6975.46 km). Minimum mileage within the last year was 70 km/year and maximum mileage was 25,000 

km/year.  

Each participant filled in a data protection and participant information sheet and conducted a familiarization drive 

of about 6 minutes prior to the first measured drive to get used to the simulator. For the test drives, the participants 

were told to follow a lead vehicle with 50 km/h on a straight urban road, which crosses several intersections with 

green phased traffic lights. Each drive persisted for about 3 to 5 minutes until a crash-relevant scenario occurs. 

The participants were not briefed about the crash-relevant scenario they experienced in the drives. In each of the 

5 separate urban drives, participants experienced one of the described scenarios (repeated-measures design, Figure 

8). During the third drive, the participants experienced a scenario in which a challenging vehicle crossed from the 

left. This third drive was used to make the crash-relevant scenario more unpredictable to the participants. We 

randomized the order of the four relevant scenarios between the participants. 

The four scenarios in which a vehicle crosses from the right differ in the values of the two independent variables 

TTCP and PL. The first TTCP value is chosen so that it is physically possible to avoid a collision by pure braking. 

For this purpose, a reaction time of 1.34 s is assumed for the first scenario, based on the time from the "Cologne 

model" [44] and a braking acceleration of -9 m/s² is assumed [44]. This results in a TTCP of 2.11 s. For the second 

TTCP condition, the reaction time is halved. In the neutral PL condition, both vehicles would arrive at the same 

time at the conflict area and collide with the front edges of the vehicles assuming that both vehicles travel with an 

unchanged trajectory. In the negative PL-condition, the ego vehicle would strike the most rearward side area of 

the object vehicle with 100 % overlap, which leads to a PL value of -0.71 considering the vehicle dimensions of 

both vehicles. Under ideal conditions, assuming that the ego vehicle is driven by the participant with exactly 50 

km/h in the middle of the road, the object vehicle would travel 35.2 km/h. This is in the middle of the range of 

usual values in SCP crashes according to [42]. The exact starting position and velocity of the object vehicle is 

calculated online and adapted to the participant’s vehicle velocity and position so that the independent variable 

values are realized. However, due to the method used to trigger the object vehicle (via the Simulation Control 

Protocol of Virtual Test Drive), the independent variable values were not exactly met during the study which led 

to a mean deviation of -0.011 s of the targeted TTCP condition and +0.05 of the targeted PL condition. 
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Figure 8. Scenarios used in the driver simulator study 

Table 3. 

Scenario parameters 

 Independent variables Further scenario parameters 

Scenario TTCP0 

[s] 

PL0  

[-] 

theoretical 

vobj [km/h] 

dyocc 

[m] 

dxocc,obj 

[m] 

1 2.11 0 35.2 -16.81 5 

2 1.44 0 35.2 -10.29 5 

3 2.11 -0.71 35.2 -13.39 5 

4 1.44 -0.71 35.2 -7.53 4.5 

 

The inputs on the steering wheel and pedals of each participant were traced and analyzed regarding reaction type, 

reaction time and intensity. Additionally, the participants answered a questionnaire after each drive to obtain 

subjective data, e.g., about the perceived criticality of the situation. 

The following should be noted regarding the RTYPE classification of the study data: 

 Actuator reactions that obviously occur after the crash-relevant situations have been thwarted or occur 

after the collision are not considered. 

 In two cases, the accelerator pedal is depressed before the accelerator pedal is released and the brake 

pedal is depressed. This reaction pattern is not provided for in the RTYPE classification. It is classified 

here as RTYPE 11x, since in both situations the PL is increased and thus the initial accelerator pedal 
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depression has the greater effect than the brake pedal depression. This classification leads to a poor 

reproducibility of this same driver response. 

 In five cases, it appears that the driver is applying the brake pedal with the left foot as the accelerator 

pedal and brake pedal overlap for a short time. This very brief overlap is treated as if the accelerator 

pedal is released before the brake pedal is released. 

 In one case, the driver first steers slightly in one direction and shortly afterwards steers more strongly in 

the other direction. Here, the steering response of the higher strength is used as the basis for the 

classification. 

 In one case, the onset of braking and the onset of steering occur "simultaneously." In this case, the 

longitudinal reaction is assumed to be the initial reaction since the accelerator pedal was previously 

released. 

 In two cases, the accelerator pedal is depressed during braking. Due to the very similar accelerator pedal 

and brake pedal travel, the accelerator pedal was probably inadvertently depressed with the same foot. 

The accelerator pedal is ignored for the classification. 

RESULTS 

The driving simulator study executed was used to confirm some of the assumptions the architecture of the driver 

performance model is based on. As following steps, the results were used to parameterize the model for the 

scenarios also investigated within the study. The parameterized model was then validated by comparing the 

frequency of crashes and impact speed with the outcomes of the study executed. 

Driving Simulator Study 

Figure 9 shows the frequency of occurrence of reaction types divided by scenario type. Among the scenarios, the 

frequency of occurrence of reaction types and the variability of reactions by the participants varies. The 

participants most frequently showed a single braking reaction (12x) along all scenarios.  Steering to the right 

(ODS) only occurred after braking and never occurred as single reaction. Steering to the left (SDS) occurred after 

and before braking, after accelerating as well as a single reaction. Accelerating as single reaction occurred two 

times in Scenario 4. In Scenarios 1 and 2 (neutral PL), a higher variability in reaction types can be observed than 

in Scenarios 3 and 4 (negative PL). In Scenarios 1 and 2 (neutral PL), the participants steered sixteen times to the 

left (SDS) and four times to the right (ODS). In Scenarios 3 and 4 (negative PL), the participants steered two times 

to the left (SDS) and seven times to the right (ODS). Scenario 4 is the only scenario in which the initial reaction 

is always a longitudinal reaction.  

 

Figure 9. Frequency of occurrence of reaction types in each scenario of the study, colored arrows indicating 

the effect of the reactions on the vehicle dynamics (green: increased acceleration, red: decreased acceleration 

(typically braking), blue: unchanged longitudinal acceleration) 
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Regarding our RQ2 about typical first reactions (braking or SDS steering (to the left)) of drivers, we analyzed the 

observed reaction types. From all of the 95 drives in which a reaction was shown, the participants showed a 

hypothetical first reaction in 90 of the rides. A Pearson Chi²-Test regarding the incidence of hypothetical typical 

(braking: [12x, 33x-Long, 34x-Long], SDS steering [21x, 33x-Lat]) vs. untypical  first reactions in each scenario 

supports the hypothesis that the drivers show a hypothetical first reaction in all four scenarios (Χ²(1)=19,174, 

p<.001 (Sc.1: n=23); Χ²(1)=20,167, p<.001 (Sc.2: n=24); Χ²(1)=16,667, p<.001 (Sc.4: n=24); (Sc.3: n=24) follows 

consequently, given that only typical first reactions were observed).   

With the help of the frequency distributions of the reaction types per scenario, research question 3 is examined. 

The differences between the two PL conditions lie in the variety of reaction types and in the frequency of 

occurrence of individual reaction types. For example, pure braking reactions are observed 10 times (27 to 37) less 

frequently in total in the neutral PL condition than in the negative PL condition. In addition, seven different 

reaction types occur in total in the neutral PL condition, while four different reaction types can be observed in the 

negative PL condition. Thus, the results are consistent with hypothesis 3.1. Between the TTCP conditions at the 

same PL, there is a clear difference only for the frequency of pure braking reactions between scenario 1 and 2 (11 

to 16). Based on the data, only a small influence of the TTCP on the driver's choice of action can be assumed. By 

the fact that almost every driver in the post-survey stated to have perceived the different temporal criticality 

between the scenarios, this small difference may nevertheless actually be due to the changed criticality. It should 

be noted that in the studies of [18] and [20], a discontinuity in the frequency course of braking and steering 

responses over a changed TTCP was observed. In Weber's study, braking reactions increased again at highly 

crash-relevant events, after the frequency of these had previously decreased with decreasing TTCP [18]. It is 

possible that the TTCP values in the present study were chosen in an unfortunate way to investigate the hypothesis, 

so that this discontinuity is reflected in the present study. For hypothesis 3.2, further research is needed at this 

point. 

Parametrization of Driver Performance Model  

The study’s results are used to parametrize the previously described generic driver performance model. The 

frequency distribution of shown reaction types is used to parametrize the decision tree (see Figure 5) while the 

reaction times and reaction intensity are obtained from the traces of the pedal and steering wheel inputs.  

In the study, driver behavior was recorded under two different PL and two different TTCP values and their 

combinations.  

Since the literature review and our study show that drivers tend to change their behavior under different scenario 

conditions, this dependence of the probability of a reaction pattern is also reflected in the parameterization of the 

decision tree. We considered the influence of the scenario conditions, TTCP and PL, in different ways: 

The influence of the priority level is discretized by creating two decision trees (see Figure 12) for different priority 

level ranges: one tree for the range of PL [-1, -0.4] and one tree for the range of [-0.4, 0.4]. During simulation, the 

appropriate decision tree is selected based on the priority level perceived by the perceptual module. It would also 

be possible to overlap ranges. A decision tree is then randomly selected in the overlapping area.  

Up to five decisions are made within the decision tree. The probability of a decision is modeled using data from 

the driving simulator study. The probability is modeled per priority level at two support points of the TTCP. If the 

perception module of our driving performance model perceived a TTCP between the support points, the 

probability values at the point of perceived TTCP would be obtained by interpolation.  

The assumption that driver behavior can be discretized into groups of similar PLs was not explored in our study. 

Rather, this assumption was made due to the lack of other experimental data. Also, the question of whether 

interpolation between TTCP support points is a valid procedure was not investigated in our driving simulator 

study neither, but would need to be investigated in follow-up studies. Our choice to incorporate the two scenario 

parameters differently in the parameterization of the decision tree served to demonstrate the possibilities of 

parameterization. However, we cannot claim that the assumptions made are correct.  

In our model, the reaction time depends on the selected reaction type and on the TTCP perceived by the perception 

module of the driver performance model. This results in a small amount of data available in the study as a basis 

for the parameterization of reaction time, depending on the reaction type and TTCP condition. In order not to 

reduce the amount of data further, we refrain from distinguishing the PL condition, but without being able to claim 

that the PL has no influence on the reaction time. 

From the study data, the average reaction time and the standard deviation are determined in order to model a 

normal distribution of the reaction time. The normal distribution is modelled as a truncated normal distribution so 

that implausible reaction times cannot arise. Implausible reaction times would exist if the reaction time takes on 

a negative value or if the reaction time of the second reaction is less than that of the first reaction. If a TTCP value 
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between the two experimental conditions were perceived by the driver performance model, both the mean and the 

standard deviation would be interpolated. A reaction time is then determined probabilistically. 

The conversion time between accelerator pedal release and brake pedal depression is parameterized as 0.2 s for 

all applicable reaction types. This means that the accelerator pedal is released 0.2 s before the parameterized brake 

reaction. 

The reaction itself is modeled using the algorithms presented previously (Equation (4) – Equation (8)). To be able 

to model different reaction intensities, up to five reaction intensities per control element intervention are 

distinguished.  

That is, a distinction is made between whether, for example, the brake pedal is depressed very lightly, lightly, 

moderately, strongly, or very strongly. A parameter set is determined for each of these reaction intensity groups.  

The parameterization of the reaction intensity is carried out in six steps: 

1. aggregation of the study data with respect to identical controller responses (see Table 10) 

2. definition of a characteristic value for the reaction intensity, e.g., maximum pedal position 

3. definition of the limits of the reaction intensity groups (see Table 9) 

4. set up a linear regression model of the reaction intensity over reaction time 

5. determine the probability of occurrence of a reaction intensity group using the linear regression model 

6. fitting the control algorithms with the measured data of a reaction intensity group (see Figure 13 and 

Figure 14). 

In the driver performance model, a reaction intensity of the respective control unit is then determined 

probabilistically as a function of the reaction time. Depending on the reaction intensity group, the respective 

parameter set for the reaction algorithms. 

Results from scenario re-simulation with the parameterized model 

As a means of validation for how the model works in applications in effectiveness evaluation, the scenarios that 

have been simulated in the simulator study have been simulated also with the parameterized model to compare, 

whether the driver reaction produced by the model produces similar outcomes as observed in the study. For this, 

we compared the frequency of collisions in the simulated scenario from 100 repetitions with the stochastic model 

with that from the simulator study. Figure 10 shows that the frequency of collisions is comparable between the 

study and the simulated driver response. 
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Figure 10. Comparison of the collision occurrence and velocity between the re-simulation and study 

For scenarios, in which collisions occurred, we compared the speed at impact of the ego vehicle. For scenarios 3 

and 4 (negative priority level) resulting collision speed show comparable distributions. For scenarios 1 and 2 

(neutral priority level) distributions of impacts speeds show some deviations, while it needs to be noted, that these 

scenarios show an overall larger spread in the outcomes of the driver reaction. 

DISCUSSION 

The model presented in this paper provides a framework for integrating driver behavior within a toolchain for 

effectiveness assessment of automated driving systems. It supplies a container for processes defining the action 

decision, the reaction time, and the magnitude of the reaction. 

As in principle, the model will follow the complexity of the collection of scenario categories which was used in 

the effectiveness assessment. Scenario-based evaluations as such run the risk of the curse of dimensionality. While 

evaluation of systems operating on motorways may allow the evaluation of a rather simple framework of driving 

scenarios, comprehensive assessments of urban operating domains can result in a wide variety to be tested. It 

depends on the assessment approach and overall sample size of scenarios whether each scenario to be simulated 

needs to be simulated multiple times to cover different possible driver reactions. 

A general advantage within scenario-based testing is the possibility to focus on certain scenarios, i.e., the most 

relevant ones, either in terms of overall risk, frequency of occurrence or possible consequences. The driver model 

framework presented is intended to focus on the hypothetical typical reaction, thus it may be justified to 

parameterize and simulate not all physically possible driver reactions. 

An issue lies within the generalizability of driver reactions: In the study presented, 2x2 scenario configurations 

were analyzed between participants. The results showed that there was a difference in driver reaction between the 

Sc. 1 Sc. 2 Sc. 3 Sc. 4

Resimulation (n=100) 50.0% 96.0% 12.0% 86.0%

Study (n=24) 37.5% 100.0% 20.8% 91.7%
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simulated scenarios. In principle, the parameters obtained for these scenarios could be extrapolated linearly to 

cover more possible parameter configurations, but especially in terms of driver reaction, linear extrapolation does 

not appear plausible. To parameterize a model, that can cover all parameter combinations of the scenario to be 

studied, a large-scale study would need to be executed and statistical methods to be applied to parameterize the 

model for the entire value range of the scenario. To apply the model within other scenarios, an analysis is needed 

to see which scenario parameters have most influence on the driver reaction, either based on literature or on 

dedicated studies of the scenario.  

Even though there is the danger of the curse of dimensionality, applying a modular model as presented, would 

enable sharing the findings of individual studies to gradually cover the most relevant scenarios, such that over 

time, driver modeling of such scenarios consists of less and less black spots and holistic assessment of e.g., level 

4 automated driving systems will be feasible. 

Similar to driver performance models in general, the proposed model faces the challenge, that for the situations 

simulated a stimulus for the reaction needs to be defined (for further elaboration see [5]). This is possible in 

experimental conditions, like in the study performed, where the object vehicle was occluded while the ego vehicle 

entered the intersection. The object vehicle becoming visible could easily be used as the stimulus for determining 

the reaction time. In other situations, this may not be possible. For instance in a rear-end scenario with the leading 

vehicle already in deceleration and then applying a sudden stronger deceleration, the brake lights could not be 

used as stimulus for the driver response. The model proposed in [5] could provide solution to this challenge and 

could be integrated as rule-based perception model on the guidance layer (GPr). While [5] discusses, how the 

evolving situation can affect the driver’s reaction choice – which was also one of the core assumptions of our 

model, though achieved through simpler metrics referencing a distinct stimulus – it does not yet provide a solution 

how the reaction choice may be implemented. As shown in literature (e.g., [22]) as well as is the study presented, 

parameters of the situation have an effect on the reaction choice of the driver. The choice of reaction can of course 

have great impacts on the outcome of the crash-relevant situation. As long as no model exists, which can 

implement both, a reaction time independent of the stimulus as well an influence of situational parameters on the 

action decision, it needs to be carefully considered, which aspect may be more relevant to the targeted evaluation. 

CONCLUSIONS AND FUTURE WORK 

This paper presents an architecture and an application of a generic driver performance model. The model used a 

fundamental structuring of the driver reaction by means of the levels of the driving task by Donges [10], the 

structuring of goal-oriented activities by Rasmussen [12], and the general information processing chain of a driver. 

Using a structure as presented and standardized interfaces as OSI [38] will allow an easy exchange of model 

components and an easier documentation of the baseline simulations within a predictive effectiveness assessment, 

which would ultimately result in a greater acceptance and comparability of results. 

As next steps, the model needs to be parameterized for more driving scenarios, using greater samples to cover the 

entire driver population in terms of age, gender or driving experience. The parameterization of different scenarios 

can be driven by its intended applications, e.g., by focusing first on scenarios relevant for motorway ADS. The 

modularization of the model and the separation of modeling and parameterization would allow an easy reuse of 

components and parameter sets established. Moreover, more complex models for perception and cognition could 

be integrated depending on the use case. A tradeoff should be considered between a comprehensive modeling of 

the actual perception and cognition processes and a more straightforward though simplified approach using 

distributions of reaction times. 

In principle, the application of the model faces the same pitfalls as scenario-based testing for ADS in general, but 

will also profit from its advancements. Research in scenario-based testing tries to identify the most relevant 

scenarios for an ADS such that an efficient yet comprehensive evaluation process can be established, for instance 

using a scenario framework as presented in [45]. This reduction of the scenario-space will also reduce the effort 

for parameterizing the driver performance model. Given that the variety of driver reactions requires the modeling 

of stochastic processes, each concrete scenario needs to be simulated multiple times, increasing simulation efforts. 

At the same time – once a concrete scenario has been simulated using the model – the results can be reused 

multiple times, in contrast to the V&V process of an ADF where each system iteration needs a repetition of 

simulations. Furthermore, findings on the typical driver reactions within crash-relevant scenarios (see [40]) may 

provide an acceptable reduction in driver reactions to be considered. 

Within future work, we will establish a connection between the driver performance model presented and models 

that cover normal driving phase. A suitable model for this is the model by Klimke, as it follows a similar 

structuring of the driving task [15]. This may allow a comprehensive model that includes traceable crash causation 

mechanism which can also be used to induce crash-relevant situations. This way, the model could also be used 

within a traffic simulation-based assessment, where the causation of a crash does not need to be scripted within 
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the scenario but is a result from the interaction of driver models. This approach would be similar to the approach 

in [16] but at the same time allows a more detailed modelling of driver reaction within the crash relevant scenario. 
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APPENDIX 

 

Figure 11. Annotated screen picture of scenario no. 3 of the study 
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Table 4. 

Low-level RTYPE classification (1 of 3) 
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1xx

1 11x A Ai 11-1 Legend

2 11x B Bd 11-2 A: Accelerator

3 11x A-B Ai Bd 11-3 B: Brake pedal

4 11x B-A Bd Ai 11-4 S: Steering

5 12x B Bi 12-1 i: increase

6 12x A-B Ad Bi 12-2 d: decrease

7 12x B-A Bi Ad 12-3 l: left, r: right

8 1xx A-B Ai Bi 1x-1 Long: longitudinal

9 1xx B-A Bi Ai 1x-2 Lat: lateral

10 1xx A-B Ad Bd 1x-3

11 1xx B-A Bd Ad 1x-4

2xx

12 21x S Sl 21-1

13 21x A-S Ad Sl 21-2

14 21x S-A Sl Ad 21-3

15 22x S Sr 22-1

16 22x A-S Ad Sr 22-2

17 22x S-A Sr Ad 22-3

3xx

18 31x-Long A-S Ai Sl 31-1-Long

19 31x-Long B-S Bd Sl 31-2-Long

20 31x-Long A-B-S Ai Bd Sl 31-3-Long

21 31x-Long B-A-S Bd Ai Sl 31-4-Long

22 31x-Long A-S-B Ai Sl Bd 31-5-Long

23 31x-Long B-S-A Bd Sl Ai 31-6-Long

24 31x-Lat S-A Sl Ai 31-1-Lat

25 31x-Lat S-B Sl Bd 31-2-Lat

26 31x-Lat S-A-B Sl Ai Bd 31-3-Lat

27 31x-Lat S-B-A Sl Bd Ai 31-4-Lat

increase lateral 

acceleration

RTYPE 1xx: longitudinal reaction

increase 

longitudinal 

acceleration

decrease 

longitduinal 

acceleration

undefined 

longitudinal 

acceleration

RTYPE 2xx: lateral reaction

decrease lateral 

acceleration

RTYPE 3xx: combined reaction (1 of 3)

increase 

longitudinal 

acceleration + 

increase lateral 

acceleration
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Table 5. 

Low-level RTYPE classification (2 of 3) 
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3xxRTYPE 3xx: combined reaction (2 of 3)

28 32x-Long A-S Ai Sr 32-1-Long Legend

29 32x-Long B-S Bd Sr 32-2-Long A: Accelerator

30 32x-Long A-B-S Ai Bd Sr 32-3-Long B: Brake pedal

31 32x-Long B-A-S Bd Ai Sr 32-4-Long S: Steering

32 32x-Long A-S-B Ai Sr Bd 32-5-Long i: increase

33 32x-Long B-S-A Bd Sr Ai 32-6-Long d: decrease

34 32x-Lat S-A Sr Ai 32-1-Lat l: left, r: right

35 32x-Lat S-B Sr Bd 32-2-Lat Long: longitudinal

36 32x-Lat S-A-B Sr Ai Bd 32-3-Lat Lat: lateral

37 32x-Lat S-B-A Sr Bd Ai 32-4-Lat

38 33x-Long B-S Bi Sl 33-1-Long

39 33x-Long A-B-S Ad Bi Sl 33-2-Long

40 33x-Long B-A-S Bi Ad Sl 33-3-Long

41 33x-Long B-S-A Bi Sl Ad 33-4-Long

42 33x-Lat S-B Sl Bi 33-1-Lat

43 33x-Lat A-S-B Ad Sl Bi 33-2-Lat

44 33x-Lat S-A-B Sl Ad Bi 33-3-Lat

45 33x-Lat S-B-A Sl Bi Ad 33-4-Lat

46 34x-Long B-S Bi Sr 34-1-Long

47 34x-Long A-B-S Ad Bi Sr 34-2-Long

48 34x-Long B-A-S Bi Ad Sr 34-3-Long

49 34x-Long B-S-A Bi Sr Ad 34-4-Long

50 34x-Lat S-B Sr Bi 34-1-Lat

51 34x-Lat A-S-B Ad Sr Bi 34-2-Lat

52 34x-Lat S-A-B Sr Ad Bi 34-3-Lat

53 34x-Lat S-B-A Sr Bi Ad 34-4-Lat

54 3xx A-B-S Ai Bi Sl 3x-1-Long

55 3xx B-A-S Bi Ai Sl 3x-2-Long

56 3xx A-S-B Ai Sl Bi 3x-3-Long

57 3xx B-S-A Bi Sl Ai 3x-4-Long

58 3xx A-B-S Ad Bd Sl 3x-5-Long

59 3xx B-A-S Bd Ad Sl 3x-6-Long

60 3xx B-S-A Bd Sl Ad 3x-7-Long

61 3xx S-A-B Sl Ai Bi 3x-1-Lat

62 3xx S-B-A Sl Bi Ai 3x-2-Lat

63 3xx S-A-B Sl Ad Bd 3x-3-Lat

64 3xx S-B-A Sl Bd Ad 3x-4-Lat

65 3xx A-S-B Ad Sl Bd 3x-5-Lat

increase 

longitudinal 

acceleration + 

decrease lateral 

acceleration

decrease 

longitudinal 

acceleration + 

increase lateral 

acceleration

undefined 

longitudinal 

acceleration + 

increase lateral 

acceleration

decrease 

longitudinal 

acceleration + 

decrease lateral 

acceleration
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Table 6. 

Low-level RTYPE classification (3 of 3) 
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3xxRTYPE 3xx: combined reaction (3 of 3)

66 3xx A-B-S Ai Bi Sr 3x-1-Long Legend

67 3xx B-A-S Bi Ai Sr 3x-2-Long A: Accelerator

68 3xx A-S-B Ai Sr Bi 3x-3-Long B: Brake pedal

69 3xx B-S-A Bi Sr Ai 3x-4-Long S: Steering

70 3xx A-B-S Ad Bd Sr 3x-5-Long i: increase

71 3xx B-A-S Bd Ad Sr 3x-6-Long d: decrease

72 3xx B-S-A Bd Sr Ad 3x-7-Long l: left, r: right

73 3xx S-A-B Sr Ai Bi 3x-1-Lat Long: longitudinal

74 3xx S-B-A Sr Bi Ai 3x-2-Lat Lat: lateral

75 3xx S-A-B Sr Ad Bd 3x-3-Lat

76 3xx S-B-A Sr Bd Ad 3x-4-Lat

77 3xx A-S-B Ad Sr Bd 3x-5-Lat

4xx

78 40x n.a. n.a. 40-0

79 40x A Ad 40-1

undefined 

longitudinal 

acceleration + 

decrease lateral 

acceleration

RTYPE 4xx: no reaction

no reaction
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Table 7. 

Parameters and dependencies of model variables RTYPE, RT and RINT  

 Reaction type (RTYPE) Reaction time (RT) Reaction intensity (RINT) 

Dependencies Scenario dependent (TTCP, 

PL) 

Scenario dependent (TTCP), 

reaction type dependent 

(RTYPE) 

Reaction time dependent 

(RT) 

Parameter Probability of occurrence of 

a RTYPE 

Control unit specific reaction 

time (mean value, standard 

deviation) 

Control unit specific and 

algorithm specific 

parameters 
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Figure 12. Parametrized decision trees for the priority level range of [-0.4,0.4] and [-1,-0.4]  
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Table 8. 

Parameter values of the RTYPE-specific reaction times 

ØTTCP 

[s] 

RTYPE Frequency 

of occur-

rence in 

study 

RT [s] 

Accelerator pedal Brake pedal Steering wheel 

MW Std. MW Std. MW Std. 

1.42 11x 2 0.642 0.153 - - - - 

1.43 12x 34 - - 0.826 0.223 - - 

1.45 21x 1 - - - - 1.267 0.000 

1.42 31x-Long 1 0.633 0.000 - - 0.917 0.000 

1.42 33x-Long 2 - - 0.717 0.047 1.025 0.153 

1.43 33x-Lat 3 - - 0.917 0.202 0.850 0.188 

1.43 34x-Long 5 - - 0.757 0.158 1.123 0.119 

         

2.10 12x 30 - - 0.896 0.240  -  - 

2.11 21x 3  -  -  -  - 1.628 0.208 

2.10 31x-Long 1 1.433 0.000  -  - 1.833 0.000 

2.09 33x-Long 2 - - 0.950 0.236 1.967 0.613 

2.11 33x-Lat 5 - - 1.437 0.140 1.083 0.216 

2.10 34x-Long 6 - - 0.783 0.211 1.189 0.323 

 

 

Table 9. 

Key values for the subdivision of reactions into reaction intensity groups 

Control unit 

reaction: 

Operate 

accelerator pedal 

Operate brake 

pedal 

Steer left Steer right 

Key value: Max. accelerator 

position [0-1] 

Max. brake pedal 

position [0-1] 

Max. steering wheel 

angle [°] 

Max. steering wheel 

angle [°] 

RINT group From To  From To From To From To 

1 (very low) 0  0.2 0  0.2 0 24 0 24 

2 (low) 0.2 0.4 0.2 0.4 24 48 24 48 

3 (medium) 0.4 0.6 0.4 0.6 48 72 48 72 

4 (high) 0.6 0.8 0.6 0.8 72 96 72 96 

5 (very high) 0.8 1 0.8 1 96 120 96 120 
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Table 10. 

Aggregated control unit reactions and frequency of occurrence in study data 

Control unit 

reaction 

Origin of the parameters for the reaction intensity specific algorithms  

Aggregated RTYPEs Frequency of the RINT group in study data 

 RINT group 

∑ 1 2 3 4 5 

Operate 

accelerator pedal 

11x, 31x-Long, 32x-Long, 31x-Lat, 

32x-Lat 

4 0 0 0 0 4 

Operate brake 

pedal 

12x, 33x-Long, 33x-Long, 33x-Lat, 

34x-Lat 

87 1 1 5 10 70 

Steer left 21x, 31x-Lat, 33x-Lat, 31x-Long, 33x-

Long 

18 4 7 1 1 5 

Steer right 22x, 32x-Lat, 34x-Lat, 32x-Long, 34x-

Long 

11 2 5 2 2 0 

 



 Weber 31 

 

Figure 13. Reaction intensity specific parameters of the pedal control algorithm of the driver performance 

model 
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Figure 14. Reaction intensity specific parameters of the steering algorithm of the driver performance model 
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{ 
  "$schema": "http://json-schema.org/draft/2019-09/schema", 
  "title": "Parameter file", 
  "required": ["scenario", "RTYP"], 
  "properties": { 
    "scenario": {       
      "description": "C1" 
    }, 
    "RTYP": { 
      "12x": { 
        "comment": "acceleration: long neg, lat none", 
        "classification": "typical", 
        "RT": { 
          "long": { 
            "independent_var": { 
              "comment": "'name' needs to be attribute of driver, e.g. 'ttcp' (driver.ttcp)", 
              "name": "ttcp",   
              "val": [1.43,2.10]                       
            }, 
            "mean_val": [0.826,0.896], 
            "std": [0.223,0.240], 
            "dist": "normal", 
            "device": "brake", 
            "rt_transfer": -0.2 
          } 
        }, 
        "RINT": { 
          "long": { 
            "independent_var": { 
              "comment": "'name' needs to be attribute of driver, e.g. 'ttcp' (driver.ttcp)", 
              "name": "rt_long",   
              "val":[0,0.016667,0.033333,0.05,0.066667,0.083333,0.1,0.11667,...]                       
            }, 
            "branches": ["very_low","low","mid","high","very_high"], 
            "weights_very_low": [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...], 
            "weights_low": [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,...], 
            "weights_mid": [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.,...], 
            "weights_high": [0,0,0,0,0,0,9.9285e-05,9.9374e-05,9.9453e-05,0.00019902,0.00029872,...], 
            "weights_very_high": [1,1,1,1,1,1,0.9999,0.9999,0.9999,0.9998,0.9997,0.9996,0.9994,...] 
          }               
        }, 
        "inputs": { 
          "comment": "low level RTYP", 
          "long": {   
            "low": { 
              "comment": "Accelerator lift and low intensity brake apply", 
              "A": { 
                "comment": "define input here", 
                "accelerator_open_loop_target": 0, 
                "accelerator_open_loop_gain": 1, 
                "accelerator_open_loop_timeconstant": 0.1 
              }, 
              "B": { 
                "comment": "define input here", 
                "brake_pedal_open_loop_target": 0.37, 
                "brake_pedal_open_loop_duration": 10, 
                "brake_pedal_open_loop_gain": 1, 
                "brake_pedal_open_loop_timeconstant": 0.09, 
                "tau_control": "False" 
              } 
            }, 
            "mid": { 
              "comment": "Accelerator lift and medium intensity brake apply", 
              ... 
            }, 
            ... 
          } 
        }        
      }, 
    ...     
    } 
  } 
} 

Figure 15. Exemplary implementation of decision tree in model based on study results 


