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ABSTRACT 

To reduce the number of the fatalities among the motorcyclist in Asian countries, it is necessary to analyze and 

clarify the cause of the accident, however, the accident data are insufficient in these countries for the accurate 

analysis. To compensate for insufficient accident data, the authors approached to analyze the accident using the 

probe data obtained from vehicles. 

The investigation was conducted by the riding data acquired from the 50 cc motorcycles, including the location 

information in 1 second cycle, the vehicle speed and the throttle opening signals in 0.2 seconds cycle acquired from 

the Global Navigation Satellite System (GNSS) and the Electronic Control Unit (ECU), respectively. The time 

historical data from GNSS and ECU were divided into 5798 trips, separated by the time interval longer than 1 

minute. During all trips, there was only one accident. The acquired data were processed by the autoencoder model to 

extract the characteristics of the trips and riding behavior. The autoencoder model has the latent space between the 

encoder and decoder to analyze the trips and riding behavior. The information of trips and riding behavior in the 

latent space was quantified using Kernel Density Estimation to express the anomaly of the trips and riding behavior. 

In addition, riding simulations were conducted based on GNSS and ECU information to validate the results of 

abnormality detection by the autoencoder.  

The results showed that the accident data were classified as abnormal behavior. The anomalies could be expressed 

as changes with time history. It proved that the riding abnormalities appeared 30 seconds before the accident 

occurred. When the simulation was also performed to reconstruct the accident, it was observed that the rider was 

riding dangerously such as slipping past the car or accelerating and decelerating rapidly. 

The authors devised a method to analyze the causes of traffic accidents by using the autoencoder model and riding 

simulation. This method is expected to improve the efficiency of accident data collection and analysis in regions 

where accident data for motorcycles is lacking, such as in developing Asian countries. 

INTORDUCTION 

According to World Health Organization report [1], accidents involving motorcycles account for 28% of all traffic 

fatalities worldwide, which is second only to automobiles; countermeasures against traffic accidents involving 

motorcycles are an important research issue to reduce the number of fatalities. In general, to reduce traffic accidents, 

it is necessary to analyze the actual conditions of accidents and elucidate the causes of accidents. Since accidents 

involving motorcycles are more prominent in Asian developing countries such as Thailand [1], it is important to 

analyze accidents in these countries. Previous studies [2] showed the factors of motorcycle accidents by the 

investigation of the motorcyclist accident data in Thailand. However, the data contains the following residual issues 

and that precluded an elaborate analysis. First, the volume of the data was insufficient for the investigation and the 

accuracy of the analysis was low. Moreover, since various data aggregators, which are the police, hospitals, and 

insurance companies, investigated individually, it is hard to comprehend the relationships among respective data [3]. 

Second, the numerous accident investigation was engaged manually, which resulted in the inaccurate data collection 
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due to the error in the descriptions or lack of information. Therefore, these manual works require the large amount of 

costs to ensure the data accuracy. 

To collect more adequate data, it is necessary to create the efficient data collection process by eliminating the 

individual works. In recent years, the application of Intelligence Technology Systems has promoted the use of 

vehicle probe data and enable the effective estimation of road conditions and traffic accident risks [4]. In addition, 

Matsuo et al. improved the accuracy of collision risk estimation for vulnerable traffic by using probe data [5]. The 

objective of this study is the proof of the concepts applying the probe data obtained from motorcycles to traffic 

accidents analysis without any investigation reports by the third-party organizations.  

METHODS 

Motorcycle probe data 

The investigation was conducted by the riding data acquired from the Global Navigation Satellite System (GNSS) 

instrument and the Electronic Control Unit (ECU) installed on the 50 cc motorcycles, including the location 

information in 1 second cycle, the vehicle speed and the throttle opening signals in 0.2 seconds cycle, respectively. 

The time historical data from GNSS and ECU were divided into 5798 trips, which was separated by the time interval 

longer than 1 minute. During the period of all trips, there was only one accident. A schematic diagram of the 

accident trip is shown in Figure 1. 

Labeling rider behavior 

Since riding behaviors cannot be directly observed from the probe data, those were estimated by the locations, the 

speeds, and the azimuth angles information. Estimated behaviors were defined as going straight, turning right, 

turning left, stopping, accelerating, decelerating, and cruising based on each state which were listed in Table 1, 

respectively. The turn direction was defined by the integration of the azimuth angle of travel per unit time within 5-

second intervals. The state of acceleration or deceleration was defined based on the comparison of the speed of start 

and end within 5-second intervals with the average speed. For example, if the start speed was less than average 

speed and the end speed was greater than average speed, the behavior was defined as acceleration. All of the probe 

data was separated into 5-second intervals and labeled those riding behaviors according to the definition. In order to 

represent as various riding behaviors as possible, we defined 10 classes of riding behaviors: “straight + 

acceleration”, “straight + cruise”, “straight + deceleration”, “right turn + acceleration”, “right turn + cruise”, “right 

turn + deceleration”, “left turn + acceleration”, “left turn + cruise”, “left turn + deceleration”, “left turn + 

deceleration”, and “stop” by combining [straight, right turn, left turn] with [acceleration, deceleration, cruise] labels. 

These definitions allow classification of which riding behavior was being performed at a given time in the probe 

data. This enables analysis of riding behavior until the time of an accident. 

Training model of riding history 

Probe data contains a vast amount of data on normal riding. In order to analyze accidents, it is necessary to extract 

only information on the occurrence of accidents. Therefore, a classification model is constructed from the probe 

data, which can be regarded as the occurrence of an accident. 

As the probe data contains a large volume of the data regarding a normal riding behavior without any accidents, it is 

necessary to extract the part in a short duration related to the traffic accident. The classification model is required to 

detect the rare incident from the data, however, since there is only one accident data in the probe dataset of this 

study, it is inappropriate to build the classification model by a supervised learning which generally requires many 

ground truth data. On the other hand, an anomaly detection model as an unsupervised learning is effective to detect 

the presence of the error incidents such as the traffic accident by a sparse ground truth data [6].  An anomaly 

detection model is possible to be trained by various types of data such as complicated images and time historical 

data [7]. Previous study built the autoencoder model to detect an anomaly taxi route by means of a large amount of 

vehicle trajectory data [8]. The autoencoder model contains a latent space connecting the input and output variables 

and the space is observable by visualizing the dimension-reduced vectors. The latent space is the mixture 

distribution consisting of the mean and variations, therefore, it is possible to determine whether the similarity of the 

newly obtained data is average or an outliers an anomaly by measuring the distance to a cluster of features in the 

latent space. This study built the deep anomaly detection model based on an autoencoder to extract the error 
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incidents from a large amount of historical riding data, which were assumed as that contains the anomaly rider 

behavior occurring an accident.   

Convolutional Neural Networks were used for the encoder and decoder [9]. To ensure that features can be well 

separated in the latent space, the decoder network was set up to split the trip and riding behavior labels. The trip 

portion was trained with Mean Square Error loss function, while the riding behavior label portion was trained with 

Cross Entropy loss function [9]. After training was completed, the riding behaviors were classified into 10-class 

clusters every 5 seconds. The target riding behavior can be judged as abnormal by measuring the distance from the 

center of the cluster (Figure 2). To quantitatively measure the distance in the latent space, Kernel Density Estimation 

(KDE) was used for each cluster [10]. Each cluster’s center was defined from the mode of the KDE. The distance 

from the center was measured in Mahalanobis’ distance [11]. For example, riding behaviors of a rider always near 

the center of the cluster can be considered normal riding, while riding behaviors far from the center of the cluster 

can be considered abnormal riding. By measuring this distance for riding behavior every 5 seconds, the degree of 

riding abnormality can be observed in the time history. Figure 3 and Table 2 show the schematic diagram and 

parameters of the autoencoder model, respectively. 

RESULTS 

Figure.4 shows the distribution of average Mahalanobis’ distance during a trip. The average Mahalanobis’ distance 

during a trip was most often between 0.4 and 0.6. On the other hand, the average Mahalanobis’ distance for the 

accident trip was 1.43. Since the average Mahalanobis’ distance was more than 1.4 within 5% of all trips, the 

anomalies can be classified. Figures 5 and 6 show the latent space and the time history graphs of Mahalanobis’ 

distance for the accident trips. It was found that the Mahalanobis’ distance increased about 30 seconds before the 

timing of the accident. In particular, the distance increased during the actions of accelerating straight, cruising 

straight, and decelerating straight. 

DISCUSSION 

In order to analyze how the rider was doing before the timing of the accident, the riding reconstruction simulation 

was conducted. Motorcyclemaker by IPG was used for the simulation [12]. The vehicle model was simulated only 

by the exterior shape, and location and time information was input to reconstruct simple riding. The roads were 

reconstructed by downloading Keyhole Markup Language files of the surrounding roads ridden from Google Maps 

and inputting them into Motorcyclemaker [13]. The objects such as sidewalks, buildings, traffic signals, and signs 

were reconstructed by using the 3D city model opened by the Ministry of Land, Infrastructure, Transport and 

Tourism [14] and applying textures to the objects with reference to Google Street View [15]. Figure 7 shows the 

picture of the riding trajectory on the road obtained by the simulation. Figure 8 shows the schematic diagram of the 

travel trajectory. These figures show that the vehicle seems to stop slightly behind the stop line at the intersection 

and then move forward on the roadway boundary before the intersection. After passing through the signal 

intersection, the vehicle was traveling at speeds fluctuating between 35 km/h and 40 km/h. Although the speed 

limiter limits the upper speed limit to about 40 km/h, the vehicle's riding behavior was unnatural, with repeated rapid 

acceleration and deceleration. Since the accident report noted the presence of a car ahead, we considered the rider to 

have repeatedly acted in a hurry to keep a short distance from the car ahead. Figure 9 shows the setup with the other 

vehicles, placed on the reconstruction simulation based on the above assumptions. From the results of the accident 

reconstruction simulation, the relationship between the Mahalanobis’ distance time history and riding behavior is 

discussed and the results are shown in Figure 10. In addition, the capture of events between the time of arrival 

before the intersection and the occurrence of the accident is shown in Figure 11. In this accident case, the following 

three factors are the causes of the accident. 

⚫ The rider was slipping past the car at the intersection. 

⚫ The rider was accelerating and decelerating rapidly to keep a short distance from the vehicle ahead. 

⚫ The rider changed lanes and immediately returned to the original lane. 
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In this study, the anomaly detection model using the probe data was able to identify the abnormal riding behaviors 

that led to the accident. Furthermore, by conducting the simulation to reconstruct the accident, we were able to find 

the insights into the behavior just prior to the accident, which were not recorded in the accident reports. This allowed 

us to analyze riding behavior about accidents, without the need to conduct on-site investigations. However, the data 

in this study is limited and the number of accidents is small. We believe that expanding the collection of probe data 

and validating the methodology of this study will enable reliable analysis of traffic accidents involving motorcycle 

vehicles in the future. 
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Figure 1. Schematic diagram of the accident trip 

 

Table 1. Riding behavior label defined from location information and velocity at 5 seconds intervals. 

 

Label Definition 

Go Straight The integrated value of the azimuth angle is within ± 20 deg. 

Turn Left The integrated value of the azimuth angle is under - 20 deg. 

Turn Right The integrated value of the azimuth angle is over + 20 deg. 

Stop The average velocity is under 5km/h. 

Acceleration Start speed is less than average speed and end speed is greater than average speed. 

Deceleration Start speed is greater than average speed and end speed is less than average speed. 

Cruise Other than acceleration and deceleration conditions. 
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Figure 2. Schematic diagram of analysis method using latent space. 

 

 

Figure 3. Schematic diagram of the Autoecndoer model 
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Table 2. Parameters of the Autoecndoer model  

 

Encoder part 

Layer Cin Lin Cout Lout Kernel Padding Stride Activation 

Function 

Batch 

Norm 

Conv1d 9 500 32 200 5 - 5 Relu Use 

Conv1d 32 200 64 32 5 - 5 Relu Use 

Conv1d 64 32 128 8 5 - 5 Relu Use 

Conv1d 128 8 256 1 4 ‐ 5 Relu Use 

Linear 256 - 2 - ‐ ‐ ‐ Tanh Not 

Use 

 

Decoder part 

Layer Cin Lin Cout Lout Kernel Padding Stride Activation 

Function 

Batch 

Norm 

Linear 2 - 256 - - - - Leaky 

ReLU 

Use 

ConvTra

nspose1d 

256 1 128 5 5 - 5 Leaky 

ReLU 

Use 

ConvTra

nspose1d 

128 5 64 25 5 - 5 Leaky 

ReLU 

Use 

ConvTra

nspose1d 

64 25 32 125 5 - 5 Leaky 

ReLU 

Use 

ConvTra

nspose1d 

32 125 9 500 4 - 4 HardTanh Not 

Use 
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Figure 4. Histogram of average Mahalanobis’ distance for all trips. 

 

 

Figure 5. Trajectory of the accident trip for all trips in the latent space. 
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Figure 6. Maharanobis’ distance of accident trip. 

 

 

 

Figure 7. Riding trajectory on the road from reconstruction simulation 
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Figure 8. Schematic diagram of the riding trajectory with the features. 
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Figure 9. Assumptions for placement of other vehicles 

 

 

Figure 10. Relationship between riding events and Mahalanobis’ distance. 
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Figure 11. Relationship between driving behavior and Mahalanobis’ distance with simulation results 


