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ABSTRACT 

The fatality rate of thoracic injury for elderly occupants in vehicle accidents is significantly high. Its major cause is 

the rise of internal organ injury rates due to an increase in the number of fractured ribs (NFR). Therefore, NFR 

reduction is crucial to enhance elderly occupant protection and is one of the key issues for achieving zero fatalities. 

In order to improve NFR prediction accuracy, the previous study proposed the criterion using the weighted averaged 

displacement of all ribs (WADAR), which indicated a higher correlation coefficient with NFR than that of the 

criterion, Rmax, using four Infra-Red Telescoping Rod for the Assessment of Chest Compression (IR-TRACC) 

installed on the thorax of the Test device for Human Occupant Restraint Anthropometric Test Dummy (THOR-

ATD). While WADAR requires all rib deflections, it is difficult to install IR-TRACCs on all ribs inside the limited 

space in the thorax of THOR-ATD. The objective of this research is to predict the deflections of all ribs by means of 

a neural network model using time-histories of rib deflections from four IR-TRACCs and the crash velocity without 

any installation of additional measurement devices. 

The architecture of the neural network model is based on U-Net, which is one of the convolutional neural network 

models. The model was trained by time-historical X, Y and Z displacements of 14 ribs and the crash velocity 

derived from the 56 FEM simulation data, which represented frontal and oblique sled experiments with THOR-

ATD. The model learned the physical relationships among the ribs with and without IR-TRACCs. The predicted rib 

deflections were validated by the THOR-ATD experiment, where the displacements of the 2nd to 6th ribs on the left 

side were measured three-dimensionally by the set of two cameras installed on the upper and lower thoracic spines. 

The predicted deflections during 0 to 150 ms were processed into a resultant deflection and compared to the actual 

deflection through the 2nd to 6th ribs on the left side. The maximum differences in the peak deflection were 2.3 mm, 

respectively. Furthermore, the root mean square error (RMSE) was calculated at each rib for prediction accuracy 

evaluation, which resulted in minimum and maximum RMSE of 0.6 mm and 2.7 mm, respectively. 

Although the number of training datasets was small, the neural network model trained by FEM simulation data 

could predict all the rib deflections with small error without physical measurement devices.  

INTRODUCTION 

Fatal thoracic injuries in frontal crashes appeared with frequency equal to, or following, head fatal injuries [1]. Kent 

et al. reported that the percentages of drivers who died with injuries related to rib fractures increased with aging and 
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suggested that rib fracture was associated with the significantly increasing fatality rate of thoracic injuries, 

especially in elderly occupants [2]. It is estimated that the population of adults over 65 years old will increase up to 

83.7 million by the year 2050 in the United States [3] and it will result in an increasing number of drivers sustaining 

severe injury to the thorax in traffic accidents.  

Since the number of fractured ribs (NFR) is correlated with a rise in a fatality rates of the elderly population 

[4][5][6], the criteria predicting NFR with high accuracy are necessary for the development of an occupant 

protection device. 

Kent et al. suggested that the risk of rib fractures increased with the level of thoracic compression and the thoracic 

injury risk was often described by the antero-posterior deflection of the thorax [7]. The thoracic deflection is 

measured by sensors installed in the thorax of the Test device for Human Occupant Restraint Anthropometric Test 

Dummy (THOR-ATD). THOR-ATD has four Infra-Red Telescoping Rods for the Assessment of Chest 

Compression (IR-TRACC) and they are often used to estimate the injury level by criteria such as Rmax [8], which 

uses maximum resultant deflection, and PCscore [9] which is calculated by the formula based on the primary 

component analysis by means of four IR-TRACCs values.  

Kawabuchi et al. reported that NFR increased without deformation at the ribs with IR-TRACCs when a region 

remote from those ribs, such as the clavicle or upper part of the rib cage, were impacted. Under such conditions, the 

criteria using weighted averaged displacement of all ribs (WADAR) correlated better with NFR than that of the 

other criteria such as Rmax [10]. Whereas WADAR requires all rib deflections, it is difficult to install IR-TRACCs 

on all ribs inside the limited space in the thorax of THOR-ATD. Hence, this study suggests a predictive solution 

instead of physical measurement devices. 

Recent studies have investigated the application of physical simulation results to deep learning. Guo et al. developed 

the Deep Neural Network (DNN) model, which predicted a steady flow field by means of the latent fluid 

characteristics learned from computational fluid dynamics simulation results [11]. Ito et al. constructed a model that 

predicted pedestrian injury values by means of pedestrian crash simulation results [12]. As indicated in the previous 

studies, a DNN could learn a physical relationship between multiple outputs such as trajectories from the simulation 

results. For example, when the simulation well reconstructs the actual physical environment, the model trained by 

the simulation data predicts movement of one location in the actual experiment results from another separated 

location based on the latent physical relationship.  

In order to construct such a DNN model, the following are prerequisites. First, the multiple outputs of the simulation 

results mutually interact based on common physical relationships. Second, the simulation well models the actual 

physical environment. Since 14 thoracic ribs of THOR-ATD are connected by a rubber bib, the all ribs move 

together with the four ribs equipped with IR-TRACC based on the physical characteristics. That is, all rib 

deflections may be predictable from the time-historical deflection data measured by four IR-TRACCs. Also, the 

specific mechanical properties applied in the finite elemental (FE) model of THOR-ATD were validated by the 

calibration test results. As above, since the simulation data used in this study conformed to the two prerequisites, it 

may enable the DNN model to learn the latent physical relationships between the movement of the ribs with and 

without IR-TRACCs from the FE simulation results. Moreover, the model may predict all rib deflections in physical 

THOR-ATD from waveforms measured by IR-TRACCs. 

The objective of this study is to develop a DNN model learning latent mechanical properties from THOR-ATD 

simulation data and to predict the time-historical deflections of all ribs by means of four IR-TRACC deflection data. 

METHOD 

Structure of THOR-ATD 

Figure 1 shows the structure of the thoracic part of THOR-ATD. The thoracic part represents the chest of a human 

body and consists of a sternum and 14 ribs, which are fewer than the 24 ribs of an actual rib cage. The ribs and the 

sternum are connected by the costal cartilage, which is represented by the part called the bib in THOR-ATD. The tip 
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of each rib is bolted onto the bib, and they are connected with the sternum plate. The sternum plate is divided into 

upper and lower parts, which are connected with the clavicle and 2nd to 7th ribs through the bib, respectively.  

The IR-TRACCs consist of expandable tubes installed on the spine box and they are bolted on the respective tips of 

the 3rd and 6th ribs. An infrared ray is emitted in the tube and measures the change in rib deflections. The base of IR-

TRACC on the spine box has Y and Z rotation axes with angle meters which make the tube move three-

dimensionally. The spine box consists of upper and lower parts which are connected by the rubber block 

reproducing the bending movement of an actual spine. The 1st to 4th and 5th to 7th ribs are deformable steel plate with 

rubber damping materials and they are bolted onto the upper and lower spine boxes, respectively. 

 

Figure 1. Illustration of the thoracic structure of THOR-ATD 

Boundary Condition of FE Simulation for Training Data 

The results of FE simulation (LS-DYNA R9.1.2) were utilized for the training data in this study. Figure 2 shows the 

boundary condition of the simulation, which reconstructs the frontal crash sled experiment conducted in European 

research project (SENIORS) [13]. The test rig had a steel pan for a seat, a seat belt, foot rests and a generic airbag by 

means of THOR-ATD FE model version 1.3.2 [14]. The table A1 shows the load cases with the test parameters: 

impact speed, impact angle and with/without airbags. The 150 ms time-historical X, Y and Z deflections of rib tips 

and the crash velocity were extracted from the 56 simulation results as training data. 

 

Figure 2. Illustration of the test rig  

Deep Neural Network Model 

The DNN model was constructed using the sled velocity and the X, Y and Z time-historical rib deflections of four 

ribs (13 waveforms) that can be measured experimentally by IR-TRACCs, which outputted the X, Y and Z time-

historical rib deflections of 14 ribs (42 waveforms), including the four rib deflections that can be measured. The sled 
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velocity was considered to contain physical characteristics of crash modes and indirectly associated with thoracic 

deformation patterns. Figure 3 shows the processing concept of the model. 

U-Net [15] was used for the architecture of the DNN in this study, which was suitable for segmentation and style 

transformation and is often used in image processing. Figure 4 shows the conceptual diagram of the U-Net structure 

used in this study. U-Net that is based on Autoencoder with skip-connections enables reconstruction of images or 

waveforms more accurately than those by Autoencoder. Skip-connections transfer local information conventionally 

lost in the encoding process to the decoding process, improving prediction accuracy. In this study, U-net was 

assumed to be suitable because the required task was to transform the style from a known to an unknown waveform, 

rather than to predict an unknown waveform. 

The training and test of the model were conducted by means of 56 FE simulation results described above and three 

experimental data, respectively. The three test data were boundary conditions similar to the training data as shown in 

the Design of Experiments (DOE) in Figure B1. The first and second tests, Test 1 and Test 2, respectively, were 

extracted from the published sled experiments. Test 1 was engaged in the SENIORS project [13], which utilized the 

test rig consistent with FE simulation. Test 2 was engaged in the University of Virginia [16], which was conducted 

using Taurus with rear seat equipped with a seatbelt without a load limiter. The third test (Test 3) was conducted at 

40 km/h with the test rig processed from a mass-produced small size sedan model. As described in a later section, 

some of the deflections of ribs without IR-TRACCs were measured in the experiment by means of the optical 

method.  

The loss function for the training of the neural network model was the combination of Mean Squared Error (MSE) 

and L1 regularization in order to prevent overfitting because of the small size of the training datasets in this study. 

Moreover, Root MSE (RMSE) and differences of peak resultant deflection, utilized as chest injury criteria such as 

Rmax and PCscore, were also calculated for the discussion of prediction accuracy, because those dimensioned 

criteria were more understandable about the amount of the error than that indicated by dimensionless MSE. Smaller 

values for these error indicators indicated smaller errors. Test 1 and Test 2 were utilized to verify that the DNN 

model could reconstruct the waveform from the IR-TRACC data as inputs. The loss functions of these two tests 

were calculated only on the measurable ribs by IR-TRACCs. On the other hand, Test 3 was utilized to verify that the 

deflection of ribs without IR-TRACCs could be predicted from the time-historical rib deflections of measurable ribs 

with IR-TRACCs and sled velocities. 

Waveform data was preprocessed by standardization, i.e., setting the mean to 0 and the variance to 1. The 

calculation of the mean and variance for standardization was performed on simulation data alone. 

 

Figure 3. Concept of the model using U-Net 
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Figure 4. Network architecture diagram and topology of U-Net  

Stereoscopic Vision Measurement of the Ribs Without IR-TRACCs 

The time-historical deflections of ribs without IR-TRACCs were measured by the stereoscopic vision measurement 

method in order to test the predicted results. Figure 5 shows the illustration of two sets of the stereo cameras 

installed on the spine box, which recorded stereoscopic vision for the three-dimensional measurement process. The 

set of twin cameras was assembled with two high speed cameras (FASTCAM MH6 ST-Cam, Photron, Japan) and its 

recording frequency was 1000 Hz. The target markers were stuck onto each rib tip. The upper and lower cameras 

measured the deflections of the 2nd to 3rd ribs and 3rd to 6th ribs, respectively. It was required for the recorded objects 

and cameras to belong to a common coordinate system. However, the 4th rib on the upper spine box was recorded by 

lower cameras which were installed on the lower spine box because the upper IR-TRACC was prevented from 

recording the 4th ribs by the upper cameras. Therefore, the optical measured deflection of the 4th rib was estimated 

by Equation 1. 
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𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 4𝑡ℎ  𝑟𝑖𝑏 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 =  4𝑡ℎ  𝑟𝑖𝑏 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ×
𝑈𝑝𝑝𝑒𝑟 3𝑟𝑑  𝑟𝑖𝑏 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

𝐿𝑜𝑤𝑒𝑟 3𝑟𝑑  𝑟𝑖𝑏 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛
         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

The stereoscopic vision measurement was engaged on the left-side ribs alone due to the mounting space limitation of 

the equipment. The THOR-ATD with the two sets of stereo cameras was installed on the sled test rig representing a 

small sized sedan and impacted at 40 km/h for data aggregation. The validation accuracy was evaluated by RMSE 

and differences of peak resultant deflection. 

 

Figure 5. Installation of stereo cameras on the spine box 

 

RESULTS 

Learning of the Model 

Figure 6 shows the MSE losses of the training and the test and those losses were less than 0.0067 and 0.019, 

respectively. Figures 7 and 8 show comparisons of the exact and predicted data of Test 1 and Test 2, respectively, 

and these indicated that the predicted rib deflections overall reconstructed the trend and peaks of exact waveforms. 

The average RMSE of each test result was less than 1.3 mm. Table 1 shows the RMSE and the differences of the 

peak resultant deflections of Test 1 and Test 2. 

 

Figure 6. History of MSE loss function 
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Figure 7. Comparison between predicted and exact rib deflections in Test 1 

 

Figure 8. Comparison between predicted and exact rib deflections in Test 2 
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Table 1.  

The RMSE and differences of the peak resultant deflection of Test 1 and Test 2 

 

 

The Results of Stereoscopic Vision Measurement 

Figure 9 shows a comparison of the deflections measured by IR-TRACCs and stereoscopic vision on the 3rd and 6th 

ribs, respectively. Table 2 shows the RMSE of the stereoscopic vision measurement compared to the IR-TRACC 

measurement results. The stereoscopic vision measurement overall traced the rib deflection with small RMSE, 

particularly, the RMSE of resultant deflection of both the 3rd and 6th ribs were smaller than 1.0 mm.  

Figure 10 shows the comparison between the predicted rib deflections through the 2nd to 6th ribs and the optically 

measured rib deflections. The stereoscopic vision measurement results for the 2nd and 4th ribs were interrupted 

because of the obstruction of the camera view during the experiment. The noise occurred in the Z direction 

deflection of the 4th rib because the compensation by the ratio of upper and lower measurement results of 3rd rib 

deflection rose drastically within a short duration. Table 3 shows the RMSE and the differences of the peak resultant 

deflections of Test 3.  

 

Figure 9. The rib deflection measured by stereoscopic vision compared to that measured by IR-TRACC 

Table 2. 

The RMSE of the comparison of the stereoscopic vision to the IR-TRACC measurement 

 

X

[mm]

Y

[mm]

Z

[mm]

Resultant

[mm]

Differences of Peak Res.

between Pred. and Exp.

[mm]

Rib 3 1.3 1.1 0.2 1.0 -0.1

Rib 6 0.8 0.5 0.3 0.7 -1.3

Rib 3 0.6 2.0 1.4 1.3 -0.7

Rib 6 0.3 0.5 0.4 0.3 0.3

Rib 3 0.7 3.5 0.3 1.0 0.2

Rib 6 1.0 0.7 0.3 1.0 2.3

Rib 3 0.9 3.2 2.6 2.7 -1.8

Rib 6 0.6 0.6 0.4 0.4 0.6

Test 1

Left

Right

Left

Right

Test 2

X

[mm]

Y

[mm]

Z

[mm]

Resultant

[mm]

Rib 3 0.8 1.4 3.5 0.7

Rib 6 1.7 0.7 1.0 0.8
Left
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Figure 10. Comparison of predicted deflection by the DNN model and stereoscopic vision 

Table 3.  

The RMSE and the differences of the peak resultant deflections of Test 3 

 
 

DISCUSSION 

The predicted time-historical rib deflections by DNN model showed errors with smaller RMSE than average 1.5 

mm, validated by means of measured deflections by IR-TRACC and stereoscopic vision. Table 3 showed that the 

differences of predicted and experimental peak resultant deflection in Test 3 indicated smaller error than ±1.0 mm 

also in ribs without IR-TRACCs, although the model was trained by a small number of datasets. The reason for such 

small errors was assumed to be that the FE model for the training data was validated sufficiently to represent the 

actual mechanical properties among the ribs with and without IR-TRACCs and that information was included in the 

DOE of the 56 training simulation results. In addition, the THOR-ATD bib was independently validated under three-

X

[mm]

Y

[mm]

Z

[mm]

Resultant

[mm]

Differences of Peak Res.

between Pred. and Exp.

[mm]

Rib 2 2.3 2.8 1.0 2.1 ー

Rib 3 1.4 3.5 2.8 1.5 1.0

Rib 4 2.1 6.1 6.9 2.3 0.0

Rib 5 3.6 0.6 2.0 2.7 -0.3

Rib 6 1.6 1.1 0.9 0.7 -0.6

LeftTest 3
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point bending loading conditions [17]. Owing to these validations, the mechanical property of the FE simulation was 

assumed to represent the actual properties with high accuracy, resulting in the decrease of DNN prediction error.  

Although resultant deflections were predicted with small errors, Y direction deflection in the upper ribs showed 

larger errors than those of X and Z direction deflections. These trends were indicated consistently within the test 

results of Tests 1, 2, and 3. This was considered to be due to the influence of some of the boundary conditions of the 

thoracic calibration test for THOR-ATD, even though the THOR-ATD FE model overall represented well the 

experimental results with high accuracy. The thoracic calibration was conducted by horizontally impacting the probe 

on the thorax of THOR-ATD vertically seated on the test table. The response curve of force and deflection was 

confirmed to fall into the corridor [17]. As shown in Figure 1, since the tips of the ribs on the THOR-ATD are 

downward in order to more exactly represent human ribs, the directions of deflection of the impacted ribs are 

dominantly the X and Z directions. Consequently, Y direction deflection was relatively smaller than those of the 

other two directions. Hence, the validation of Y deflection would be insufficient by the calibration test, whereas the 

validation accuracy of X and Z deflection was improved by fitting within the response curve corridor. Furthermore, 

the amount of Y deflection was smaller than those of the other two directions, resulting in increasing the sensitivity 

against the error, which might decrease the validation accuracy. On the other hand, the oblique impact calibration 

test was conducted on the lower part of the thorax. The test mode may improve the accuracy of Y direction 

deflection of the ribs in the lower part.  

The RMSE of the right 3rd rib deflection was more than twice those of the three predictions. Those results may be 

due to the influence of the seat belt path, which passes from the right shoulder to the left abdomen as shown in 

Figure 11. The seat belt passes on the surface of left 3rd rib and directly push into the thorax. On the other hand, seat 

belt force on the right thorax was transmitted to the 3rd rib indirectly through the 1st and 2nd ribs. Maatouki et al. 

reported that the validation accuracy of the 3rd rib deflection was small when the probe impacted on an upper surface 

of the thorax around the 1st and 2nd ribs compared to when impacting directly on the 3rd rib [17]. Furthermore, 

although the THOR-ATD FE model was validated by the sled experiment using a seat belt, the main focus of the test 

was on the deflection of the ribs right under the seatbelt path where the maximum rib deflection mainly occurred. 

Therefore, the priority of the validation accuracy improvement was low on the ribs far from the seatbelt. For these 

reasons, the validation accuracy of the right 3rd rib was inferior to the other three ribs with IR-TRACCs and the 

prediction accuracy was also smaller than those of the other three ribs. Whereas the right 6th rib was also far from 

seat belt path, the influence of the seatbelt path may be small because the amount of the deflection itself was small.  

 

Figure 11. Illustration showing the location of seat belt path and IR-TRACC 

As limitations, the prediction accuracy of a specific direction was small due to the influence of the validation test 

condition and the seat belt path. Some of the ribs indicated an RMSE smaller than 1.0 mm. However, it would be 

necessary to improve the accuracy in order to replace a physical measurement device used for the assessment test. 

The additional learning data under various boundary conditions would be necessary in order to improve the 

prediction accuracy. Furthermore, this study validated only the 2nd to 6th ribs on the left side, and the other ribs also 

need to be validated. 
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CONCLUSIONS 

The DNN model constructed by the FE simulation predicted all time-historical rib deflections from the four IR-

TRACCs and the sled velocity as input data. When the well-validated FE simulation results were used as training 

data, the DNN was able to learn the physical characteristics, which could predict the time-historical deflection of the 

physical THOR-ATD. These results indicated the potential for application of the artificial intelligence model as an 

alternative to the measurement devices. 
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Appendix A 

Table A1. 

The load case of the training and test data 

Test No. 

Peak impact 

velocity 

[km/h] 

Impact  

angle 

[deg] 

Load  

limiter 

D-Ring  

position 
Airbag 

Seat  

type 

1 25 0 No D1 No Steel pan 

2 25 0 Low D2 No Steel pan 

3 25 30 Med D3 Yes Steel pan 

4 35 0 No D2 No Steel pan 

5 35 0 Low D3 Yes Steel pan 

6 35 30 Med D1 No Steel pan 

7 45 0 Med D2 No Steel pan 

8 45 30 No D3 No Steel pan 

9 25 0 Med D3 No Steel pan 

10 25 0 No D1 Yes Steel pan 

11 25 30 Low D2 No Steel pan 

12 35 0 Low D3 No Steel pan 

13 35 0 Med D1 No Steel pan 

14 35 30 No D2 Yes Steel pan 

15 45 0 Med D2 Yes Steel pan 

16 45 0 No D3 No Steel pan 

17 45 30 Low D1 No Steel pan 

18 45 0 Super D2 No Steel pan 

19 40 0 Super D2 No Steel pan 

20 50 0 High D2 No Steel pan 

21 45 0 High D2 No Steel pan 

22 40 30 No D1 No Steel pan 

23 40 30 Super D2 No Steel pan 

24 40 30 High D3 No Steel pan 

25 45 30 Super D3 No Steel pan 

26 45 30 High D1 No Steel pan 

27 45 30 No D2 No Steel pan 

28 50 30 No D3 No Steel pan 

29 50 30 Super D1 No Steel pan 
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Test No. 

Peak impact 

velocity 

[km/h] 

Impact  

angle 

[deg] 

Load  

limiter 

D-Ring  

position 
Airbag 

Seat  

type 

30 56 0 No D1 Yes Steel pan 

31 56 0 Med D1 No Steel pan 

32 56 0 Super D1 No Steel pan 

33 45 30 No D1 No Steel pan 

34 45 30 Super D1 Yes Steel pan 

35 45 30 Med D1 Yes Steel pan 

36 64 15 Super D1 No Steel pan 

37 64 15 No D1 Yes Steel pan 

38 64 15 Med D1 Yes Steel pan 

39 56 0 Med D1 No Steel pan 

40 56 0 Super D1 No Steel pan 

41 56 0 No D1 Yes Steel pan 

42 64 15 Super D1 Yes Steel pan 

43 64 15 No D1 No Steel pan 

44 64 15 Med D1 Yes Steel pan 

45 56 0 Med D1 No Steel pan 

46 56 0 Super D1 No Steel pan 

47 56 0 No D1 Yes Steel pan 

48 64 15 Super D1 Yes Steel pan 

49 64 15 No D1 No Steel pan 

50 64 15 Med D1 Yes Steel pan 

51 55 0 No D1 No Steel pan 

52 55 0 No D1 Yes Steel pan 

53 55 0 Med D1 Yes Steel pan 

54 55 0 Super D1 No Steel pan 

55 55 0 Super D1 Yes Steel pan 

56 55 0 Med D1 No Steel pan 

Test 1 35 0 Low D3 Yes Steel pan 

Test 2 48 0 No Others No Cushion 

Test 3 40 0 Med Others No Cushion 
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Appendix B 

Figure B1. 

Visualized diagram of DOE 

 

 

 

 


