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ABSTRACT

The authors propose a visual-inertial algorithm to estimate the kinematic states of a motorcycle traveling at high
speeds along an extra-urban road. The approach comprises the following steps: First, a monocular camera takes
video of the road ahead. Key features from sequential video frames of the road surface are extracted using the
Harris corner detector. Matching features are identified using the Fast retina keypoint descriptor (FREAK). Next,
correct the perspective warping of the feature locations by applying inverse perspective mapping. The motion
of the transformed features is registered using the Singular Value Decomposition (SVD) variant of the Iterative
Closest Point (ICP) algorithm. Finally, this measurement is combined with readings from inertial navigation
system using a Kalman filter to produce a filtered estimate and correct integrator drift. The approach was
validated using data from simulations of three scenarios created in BikeSim. In the first, the motorcycle performs
a series of slaloms along a straight road at 50 km/h. In the second, the motorcycle navigates an S-shaped bend at
80 km/h. Lastly, the motorcycle performs a double-lane change across both lanes of a straight road at 110 km/h.

INTRODUCTION

The term Powered Two-Wheeled Vehicles (P2WV) encompasses the class of self-propelled road vehicles whose
two wheels are arranged in tandem. Riders of P2WVs continue to be overrepresented in severe road accidents
[1]. By contrast, automobile road safety has steadily improved over the past decade. Among many factors in
this trend has been the introduction of Advanced Driver Assistance Systems (ADAS) into modern cars [2]. In
this context, researchers at the IBISC laboratory are investigating the modeling and control of P2WVs with
the aspiration of developing technologies for Advanced Rider Assistance System (ARAS). Various rider aids are
already commercially available such as Forward Collision Warning (FCW) and Adaptive Cruise Control (ACC)
that are analogous to their automobile counterparts. We are particularly interested in developing an ARAS
analog of the Electronic Stability Control (ESC) now ubiquitous among recent car models. Consider a warning
system capable of detecting and alerting the rider to dangerous steering situations. In critical situations, such a
system could even intervene semi-autonomously to mitigate an accident.

Developing such a system is not as simple as implementing existing ESC on motorcycles: Their slim profiles
permit a larger envelope of lateral motion compared to a car. Furthermore, a novice rider often has trouble
judging the appropriate lateral position and heading relative to the road to safely navigate a bend. Hence, riders
can attain larger magnitudes of relative lateral velocity compared to cars. Consider also that a rider must not
only judge their trajectory but must also lean into a turn to balance out the overturning moment caused by the
road-tire interaction. Therefore, the key difference from cars is that the body lateral velocity, yaw rate and steer-
ing angle can no longer be assumed to act in the road plane. Alternative formulations for the front and rear wheel
slip angles, the angles formed between the direction in which a wheel is pointing and in which it is traveling, must
be used for an ESC equivalent for P2WVs to effectively characterize dangerous over and under-steering behaviors.

Visual-Inertial Odometry (VIO) has shown encouraging performance in measuring translational velocities in Un-
crewed Aerial Vehicles (UAVs) [3]. VIO estimates ego-motion in real-time using a camera alongside an Inertial
Measurement Unit (IMU). The readings from these sensors are fed to a motion estimation algorithm such as Op-
tical Flow (OF), the Direct Linear Transform (DLT) and Iterative Closest Point (ICP). Research has also been
conducted into implementing VIO for Uncrewed Ground Vehicles (UGVs). The planar constraints of UGVs sim-
plify the motion estimation problem to two dimensions compared to UAVs. VIO for UGVs has shown promise
during indoor navigation tasks performed across multiple works [4],[5]. Outside of laboratory conditions, the
works of Song et al. show a real-world demonstration of VIO for a small UGV capturing video of the ground
beneath itself. We note that to date, these implementations were conducted only at low speeds (≤ 50 km/h).

We take inspiration from VIO for UAVs alongside the work conducted thus far for UGVs and investigate its
potential in the real-time estimation of velocity for P2WVs. We seek to know if the VIO algorithms which
perform well at high velocities on UAVs perform comparably on a motorcycle. Previous works from IBISC have
investigated the use of Inverse Perspective Mapping (IPM) to further simplify the motion estimation problem for
road vehicles [6]. Thus, we summarize our estimation algorithm: We extract matching features from successive
images taken by a camera mounted on the front of a motorcycle. Next, we use IPM to remove the perspective
warping from the feature sets and obtain two point sets. We apply ICP to estimate the rigid transform between
these two sets. From here, we express this motion estimate in the body frame of the motorcycle and use it as
the drift-correcting component of a Kalman filter-based Inertial Navigation System (INS). Finally, we re-express
this filtered estimate in the road plane and apply the appropriate kinematic expressions for P2WVs to calculate
the wheel slip angles.
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Motivation
Referring to the seminal works on motorcycle dynamics by Cossalter et al. [7], we define two cornering radii:
The ideal radius R0 of the path taken by the motorcycle assuming there is no lateral wheel slip and the actual
path radius R. The ratio of these is termed the steering ratio ξ and defines whether a motorcycle is over, neutral
or under-steering as shown in (1). Cossalter et al. derives and validates the approximations for these radii in
kinematic terms shown in (2) and (3) where αf and αr are the front and rear slip angles respectively [8].

ξ =
R0

R


ξ < 1 under-steering
ξ = 1 neutral steering
ξ > 1 over-steering

(1)

R0 =
lwb

tan∆
(2)

R =
lwb

tan (∆− αr) cos (αr) + sin (αf )
=
V

ψ̇
(3)

The definitions for all symbols used in this work are listed in Table 1. V is the velocity magnitude defined as
the norm of the longitudinal and lateral body velocity components (4). Care should be taken to distinguish the
handlebar steering angle δ from its projection onto the road plane ∆ termed the kinematic steering angle which
can be well-approximated using (5).

V =
√
v2x + v2y (4)

∆ = arctan

(
cos (ϵ)

cos (φ)
tan (δ)

)
(5)

Relationships first derived by Robin Sharp express the front and rear slip angles in terms of the kinematic
variables defined thus far. Note that in (6) and (7) as well as in (4) the longitudinal and lateral components vx
and vy are expressed in the road plane and correspond to the velocity of the projection of the motorcycle Center
of Mass (CoM) onto this plane.

αf = arctan

(
vy + lf ψ̇ − ltrδ̇

vx

)
− δ cos (ϵ) (6)

αr = arctan

(
vy − lrψ̇

vx

)
(7)

Thus one concludes that accurate measurements of velocity, yaw rate and steering angle are essential when
attempting to estimate the slip angles. Steering angle and rate can be obtained using a position encoder in the
steering bearing while the yaw rate can be accurately measured by even low-cost MEMS gyroscopes. However,
velocity is a more challenging state to reconstruct: One can suppose that longitudinal velocity can be measured
by the vehicle’s engine odometer under the assumption that there is no longitudinal slip between the tires and
the road. Lateral velocity is more challenging still: Many approaches assume the availability of this state through
Global Navigation Satelite System (GNSS). In reality, the latency and precision of most consumer GNSS modules
are, on their own, inadequate for real-time estimation and control applications according to tests carried out by
the Connected Motorcycle Consortium (CMC) at the Technische Hochschule Ingolstadt in Germany [9].

Table 1.
List of states and their definitions (absent of point and frame definitions)

symbol state units symbol parameter units

a translational acceleration m/s2 lf arm between Gr and Cf m

ω angular velocity rad/s lr arm between Gr and Cr m

v translational velocity m/s lrk rake m

ϕ roll rad ltr normal trail Rf sin (ϵ)− lrk m

θ pitch rad Rf front wheel radius m

ψ yaw rad Rr rear wheel radius m

φ lean rad ϵ caster angle rad

δ steer rad µ camera tilt rad

∆ kinematic steer rad lwb wheelbase lf + lr m

αf front slip rad

αr rear slip rad
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State observer approaches hypothesize that it is possible to reconstruct lateral velocity from measurements of
other states and a sufficiently faithful dynamical model. The most widely used of these is the Sharp 1971 linearized
model [10]. However, observers based on the Sharp model and variations of it have delivered mixed results to
date across multiple works [11],[12],[13]. Ahead of this work, we re-confirmed the results of [12] in Figure (1)
by implementing their Linear Parameter-Varying (LPV) variant of the Sharp model and comparing against
results from BikeSim. We note that while the yaw and lean dynamics estimates are satisfactory, the estimate
for the lateral velocity deviates significantly from the ground truth. Furthermore, model-based observers rely
on accurate a priori knowledge of P2WV dynamic parameters, such as mass and moment of inertia, which vary
widely depending on the rider [14]. Hence, a key technical motivation for this work is to obtain a more accurate
and robust result for lateral velocity compared to available model-based observer approaches.
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Figure 1. Lateral motion results for an LPV model of a motorcycle. Note the significant deviation
from ground truth lateral velocity in the top right plot.

Notation
We summarize the notation used in this work as follows:

� The frame originating from the point P is denoted RP .

� x and x are column vectors while A and A are matrices.

� The position vector pb
a ∈ R3 is the Euclidean position of the point a expressed in Rb.

� The distance vector rb
a,b begins at point a, ends at point b and is expressed in Rb.

� The time derivative of pb
a is ṗb

a.

� the velocity vector vb
a is the velocity of the point a expressed in Rb.

� AT is the transpose of A while A−1 is it’s inverse.

� We favor the skew-symmetric operator [x]× over the cross product ×.

� The identity and null matrices are denoted by I and 0 respectively.

� The det operator returns the determinant of a matrix.

SYSTEM DESCRIPTION

Consider a motorcycle traveling at high speed along an extra-urban road. We propose to attach a monocular
camera in front of the steering head fixed to the motorcycle rear body as shown in Figure 2. When the lean φ of
the motorcycle is zero, the camera is located at a height h0 above the road and at a distance lf from Gr shown in
Figure 3. Concerning environmental conditions, assume the road surface is smooth and well-illuminated in good
weather so that no raindrops and little jitter are present in the camera images.

Additionally, we consider that this motorcycle is fitted with an IMU located at the Center of Mass (CoM) of
the rear body Gr. The IMU measures the angular velocity ωGr acceleration aGr in the rear body frame RGr .
Assume that the IMU module is programmed with an Attitude Heading and Reference System (AHRS) sensor
fusion algorithm which outputs the roll ϕ, pitch θ and yaw ψ angles of Gr. Note that we make a distinction be-
tween the roll and lean: The roll is a rotation about the x-axis of a frame that has previously been rotated about
the local z and y-axes by the yaw and pitch respectively. In contrast, the lean is a rotation about the x-axis of RV .

Lastly, assume that the steer angle of the steering head is measured with an encoder that also provides its time
derivative the steer rate. Steer measured in the front body frame RGf is denoted by δ. The projection of this
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steer onto the road surface is denoted by ∆ and is expressed in RV . The point V is the projection of Gr onto
the road surface and its frame RV is orthogonal to the road while translating with the motorcycle.

Figure 2. Illustration of the proposed motorcycle-IMU-camera setup

We adopt the following terminology when referring to the motorcycle geometry: The angle through which the
front body is rotated with respect to the road normal is the caster angle ϵ. The horizontal distance in RGf from
the front wheel center to the motorcycle steering axis is the rake lrk. The camera is rotated by a static pitch µ
in RGr so that the road ahead dominates its Field of View (FoV).

Figure 3. Geometric parameters of the P2WV

FEATURE DETECTION & MATCHING

We define features as regions within at least two images of the same scene which could be recognized by a
computer vision algorithm. Points, corners or patterns strongly contrasting with their environment make good
feature candidates. Road scenes have been challenging for feature detection due to their relative homogeneity.
However, digital camera resolutions and embedded processing power have improved at a geometric rate since the
early development of computer vision in the 1980s. Hence, we hypothesize that it is now possible to capture
enough detail of surface flaws present on roads to robustly extract features. Theoretically, the feature detection
ought to work even better on roads with deteriorated lane markings and where the road surface has become
potted over time.

Figure 4. Superimposed image pair taken at timesteps k − 1 and k. Overlayed are the locations of
the detected features at the respective time steps and the optical flow vectors between them.

The Harris corner detector [15] is one of the earliest developed robust feature detection algorithms. Consider a
small n×n window of pixelsW in a grayscale image I. A givenW is considered a corner if displacing the window
in any direction always results in a large change in the intensity gradient. Passing this window over the entire
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image produces a map of corner features. Referring to Algorithm 1, the implementation is as follows: For every
pixel I (x, y), compute the image gradients in the x and y directions Ix and Iy of the window W surrounding
it. Here, we calculate the gradients by convolving with the Sobel kernels Gx and Gy. Construct the structure
tensor M from these and compute the cornerness score R for each pixel. A higher score indicates the presence
of a corner. Finishing steps for the algorithm typically include thresholding R for higher scores followed by
non-maximum suppression. There are many more modern feature detectors such as the Scale-Invariant Features
Transform (SIFT) and the Features from Accelerated Segment Test (FAST). While we may choose to implement
one of these in our approach at a later date, a comparison of feature detectors is not the focus of this work.

Algorithm 1 The Harris corner detector

function HarrisCorners(I,n)

Gx ←
[
1 2 1

]T ∗ [1 0 −1
]

Gy ←
[
1 0 −1

]T ∗ [1 2 1
]

w ← 1
2
[−n..n]

κ ∈ [0.04, 0.06]
for all x ∈ I do

for all y ∈ I do
W ← I (x+ w, y + w)
Ix ← Gx ∗W
Iy ← Gy ∗W

M ←
∑

(x,y)∈W

[
I2x IxIy
IxIy I2y

]
R(x, y)← detM − κ (trM)2

end for
end for
return R

end function

The next task is to identify matching features between sequential video frames of the road. We convert each feature
pixel window into a binary descriptor which describes differences in intensity values in the window. Descriptors
have the advantage of simplifying the matching process into thresholding the Hamming distance between two
binary strings. Popular descriptor schemes include Binary Robust Independent Elementary Features (BRIEF)
and Binary Robust Invariant Scalable Keypoints (BRISK). For this work, we chose the widely-used Fast Retina
Keypoint (FREAK) [16].

INVERSE PERSPECTIVE MAPPING

The positions of the features detected in Section are expressed in a persepctive projection of the world frame Rw

at this stage. Furthermore, these positions are given in pixels rather than meters. IPM constructs a synthetic
Bird’s Eye View (BEV) from an image taken in perspective. Consider a rectangular Region of Interest (RoI) in
the real world we wish to view from above defined by corner points p0 and pf in meters as shown in Figure 2.
We convert these corner points into homogeneous coordinates p̃0 and p̃f through division by the camera height.

p̃i =
[
1

h
pT
i 1

]T
(8)

We infer the existence of a virtual camera looking down from above at the RoI of resolution mVC × nVC. The
pixel intensity values in the images taken by the real camera and those taken by the virtual camera are related
by a Homography matrix H [17].

H = K

(
RVC −

1

h
tnT

)
K−1

VC (9)

Where RVC is the rotation matrix defining the orientation of the virtual camera VC with respect to the real one.
t is the displacement of the virtual camera with respect to the real camera and n is the unit normal to the road
surface. K and KVC are the intrinsic parameter matrices of the real and virtual cameras respectively. We can
approximate the inverse of the virtual camera intrinsic matrix by expressing the desired size of each of the pixels
in the BEV in world coordinates [6].

K−1
VC =


x̃f − x̃0
mVC

0 −x̃f

0
ỹf − ỹ0
nVC

−ỹf
0 0 1

 (10)
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Figure 5. Geometry of the IPM process. First, we define a plane for the BEV (highlighted in blue
above) in world frame units. Next, we project this plane onto the camera image plane (highlighted
in red). Thus, it becomes our region of interest in the real world (highlighted in black)

Now, we define the orientation of the real camera with respect to V C. Note that in Figure 2 that the real camera
z-axis is colinear with the axis of the focal point. First, we re-orient the camera axes so that it is the x-axis
instead which projects forwards using Rc.

Rc = Ry (π/2)
T Rx (π/2) (11)

Next, we undo the rotation by the tilt so that the camera position is expressed in the motorcycle body frame
RGr . Finally, VC yaws with the motorcycle so we need to undo only the roll followed by the pitch to arrive in
RV , the reference frame in which the position of the virtual camera is defined.

RVC = Rc (RθRϕRµ)
T (12)

We form the intrinsic matrix K of the real camera using its focal length f and the pixel size mx × my. The
translations tx and ty compensate for the difference in coordinate origins between an image, where the origin is
the top left corner, and the BEV, where the origin is at the bottom center.

K =

fmx 0 mxtx
0 fmy myty
0 0 1

 (13)

Finally, we construct the homography matrix HVC. Note that there is no translation: Figure 5 shows that in
reality IPM is a warping of the RoI in perspective as if the real camera were orthogonal to the world plane facing
down, thus the translation is implicitly incorporated into the design of the KVC.

HVC = KRVCK
−1
VC (14)

Recall the use of homogeneous coordinates in (8): A point pim in the original image (in pixels) is expressed in
the BEV as pbev using the inhomogeneous form of the projective transform where hi,j is an element of H located
at row i and column j.

xbev =
h11xim + h12yim + h13

h31xim + h32yim + h33
(15)

ybev =
h21xim + h22yim + h23

h31xim + h32yim + h33
(16)

Having removed the perspective warp from the feature set, we can convert each feature point pV
i from pixels into

meters by multiplying each feature by the inverse of the virtual camera intrinsic matrix to obtain our point sets
on the road surface expressed in RV .

pV = K−1
VC

[
xbev ybev 1

]T
(17)

An example of a perspective-corrected point set superimposed onto a synthetic BEV created using IPM and
bilinear interpolation is shown in Figure 6. Note that this entire process is reversible by simply multiplying the
perspective-corrected points by the inverse of H.
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POINT SET REGISTRATION

Figure 6. Features transformed into the planar coordinates. Note this time that the motions
indicated in yellow are the calculated translational velocities from the ICP and not the optical flow.

Image registration is the process of determining the affine transformation between two images of the same scene.
Thanks to the IPM, the registration problem here is restricted to two dimensions. We assume that the camera
and IPM induce no distortion in the BEV, hence there exists a rigid transformation that optimally aligns the
perspective-corrected point sets Pk and Pk−1. Let this transformation be composed of a rotation Rϑ ∈ R2×2

about the virtual camera focal axis by ϑ and a translation d ∈ R2 [18].[
Pk−1

I

]
=

[
Rϑ d
0 0

] [
Pk

I

]
(18)

However, it is never the case that the features in image k − 1 are a perfect rigidly transformed copy of those in
image k, but a close approximation can be found using algorithms such as Iterative Closest Point. There exist
several variations of ICP including such as point to point, point to plane and generalized ICP. Each of these
minimizes a slightly different metric and vary in terms of robustness against the presence of outliers. In all cases
though, ICP seeks to minimize the overlap error E between point sets in the least-squares sense [19].

min

n∑
k=1

1

n
∥E∥2 =

n∑
k=1

1

n
∥Pk−1 −RϑPk − d∥2 (19)

While iterative least-squares algorithms are more robust to outliers, this work is intended as a proof of concept
rather than a final implementation. Thus, we select the well-known Singular Value Decomposition (SVD) variant
of ICP summarized in Algorithm 2: First, center both point sets on zero by subtracting their means. Next,
form the structure tensor A from these centered sets and take its SVD. Verify that the product of U and V T is
orthogonal and multiply the end column by -1 if necessary. Finally, recover the translation using the difference
between Pk−1 and the rotation-corrected Pk.

Algorithm 2 The Iterative Closest Point algorithm

function ICP(Pk−1,Pk)

A←
[
Pk−1 − P̄k−1

] [
Pk − P̄k

]T
U ,Σ,V T ← svdA
if detR = −1 then

R←
([

1 0
0 −1

]
RT

)T

end if
R← UV T

ϑ← arctan

(
îTr3

k̂Tr3

)
d← P̄k−1 −RP̄k

return ϑ, d
end function

It is worth mentioning that the rotation between successive images k − 1 and k can also be recovered from the
IMU yaw rate measurement τψ̇ where τ is the system sample time [20].
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MOTORCYCLE KINEMATICS

Figure 7. illustration of the relationship between the rear body center of mass and the rear wheel
contact point

We assume that the translational velocity estimate from Section is measured in RV . Let us approximate the
motorycle wheels as thin disks: Referring to Figure 7 and applying the rotations in the correct order, we obtain
Rθϕ, the rotation matrix transforming from Gr to Cr. From Screw theory, we know that the twist of a point i
on a rigid body comprised of a translational velocity vb

i and an angular velocity ωb can be expressed in the world
frame Rw using the velocity adjoint mapping. Note that there also exists an inverse mapping to convert from the
world frame back into the body frame.[

vw
i

ωw

]
=

[
Rw

b [pi]× Rw
b

0 Rw
b

] [
vb
i

ωb

]
(20)

[
vb
i

ωb

]
=

[
Rb

w −Rb
w [pi]×

0 Rb
w

] [
vw
i

ωw

]
(21)

Recall from the system description that the IMU measures ωGr at Gr in RGr . With this in mind, we apply the
Adjoint maps to express the ICP velocity estimate from the Section in RGr .[

vGr
Gr

ωGr

]
=

[
RT

θϕ −RT
θϕ

[
rCr
Gr,Cr

]
×

0 RT
θϕ

] [
vCr
Gr

ωCr

]
(22)

=

[
RT

θϕ I
0 I

] [
vCr
Gr

ωGr

]
(23)

Next, we must derive the velocity of V to express the measured velocity at the front and rear contact points.
This time applying the forwards Adjoint mapping, we obtain the following:[

vV
V

ωV

]
=

[
Rθϕ

[
rGr
Gr,V

]
×
Rθϕ

0 Rθϕ

] [
vGr
Gr

ωGr

]
(24)

Finally, we obtain the front and rear slip angles from the x and y components of vV
V and the application of

Equations (6) and (7). As discussed in the introduction, the leaning motion of the motorcycle means that the
yaw rate is not equal to the angular velocity about the z-axis of RGr . However, it can be recovered through the
orientation with respect to the road plane and the application of the proper Rate Jacobian.ϕ̇θ̇

ψ̇

 =

1 0 − sin (θ)
0 cos (ϕ) sin (ϕ) cos (θ)
0 − sin (ϕ) cos (ϕ) cos (θ)

−1

ωGr (25)

Note that due to the thin disk approximation, we expect to over-estimate the velocity somewhat compared to
the ground truth as in reality rCr,Gr will not remain constant due to tire compression during transient phases.

SENSOR FUSION

The estimator described thus far is summarized in Figure 8: The IMU consisting of a MEMS accelerometer and
gyroscope feeds its readings to a standard INS, which outputs roll, pitch and the derivative of body velocity v̇Gr

Gr
.

The camera feeds images to Algorithm 1 which outputs features to the IPM. From here, the ICP computes the
motion between point sets and provides a planar velocity and yaw rate estimate. The planar velocity is converted
into body velocity using the gyroscope measurement and the Adjoint mapping (22). Finally, the integrated INS
velocity estimate is corrected for integrator drift using the vision estimate within the Kalman Filter. The velocity
is fed back into the INS and the algorithm repeats for all time steps k.
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Figure 8. The proposed visual-inertial estimation algorithm: Measurements from the IMU sensors
are highlighted in red. Readings from the proposed vision component are highlighted in green. State
estimates are highlighted in blue.

We model noise present in the vision measurement as Average White Gaussian Noise (AWGN). We use a discrete

Linear Time-Invariant (LTI) Kalman filter to produce an estimate of the motorcycle velocity vGr
Gr

. Our prediction

model is a simple integration on the input v̇Gr
Gr

provided by the INS.

x =
[
vGr
x vGr

y

]T
(26)

u =
[
v̇Gr
x v̇Gr

y

]T
(27)

F =

[
1 0
0 1

]
(28)

B =

[
τ 0
0 τ

]
(29)

Where x and u denote the state and input vectors. Concordantly, F and B are the state and input transition
matrices. Let P and Q be the error and process noise covariance matrices. The prediction equations are
summarized below where the superscript − denotes an a priori state or covariance estimate.

x̂−
k = F x̂−

k−1 +Buk (30)

P−
k = FP−

k−1F
T +Q (31)

Referring to Figure 8 we apply (22) to the translational velocity measured by our vision algorithm to obtain our
Kalman filter measurement. We summarize our measurement model below where z is the measurement vector
and H is the measurement model.

z =
[
vICP
x vICP

y

]T
(32)

H =

[
1 0
0 1

]
(33)

We complete the update step of Kalman filtering by computing the Kalman gain K and the a posteriori estimate
and covariance matrix. Note that R is the measurement covariance matrix.

Kk = P−
k HT

(
HP−

k HT +R
)−1

(34)

x̂k = x̂−
k +Kk

(
zk −Hx̂−

k

)
(35)

Pk = (I −KkH)P−
k (36)

RESULTS

To validate our approach, we designed three scenarios in BikeSim mechanical simulation software. BikeSim allows
developers to test their ARAS desgins on realistic multi-body simulations of motorcycles. We tested our vision
algorithm on three different driving scenarios. The first scenario sees the motorcycle perform a series of slaloms
along a straight road at 50 km/h. This scenario was selected in order to test our estimator at high values of
steering angle. The second scenario sees the motorcycle negotiate an S-shaped bend at 80 km/h. We chose this
scenario to test our estimator’s ability to cope with curved roads as well as straights. The third is the Double
Lane-Change (DLC) often featured in literature where the motorcycle changes from one lane to another and back
again on a straight road. We perform the DLC at 110 km/h. Here, the scenario was chosen in order to test the
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Figure 9. Trajectory and lean profiles of the three scenarios

algorithm’s ability to cope with elevated speeds typically experienced by riders on European extra-urban roads.
The paths and lean profiles of each scenario are illustrated in Firgure 9.
We implemented our estimator in MATLAB/Simulink in co-simulation with BikeSim at a sampling rate of
60Hz. The outputs from the camera were 720 × 1280 RGB images. We defined our RoI with corner points
(x0, y0) = (3m,−10m) and (xf , yf ) = (23m, 10m) in RV . The BEV resolution was 720 × 720 and we added
noise to the accelerometer reading aaccel

Gr
with a Signal to Noise Ratio SNR = 30 to test our estimator’s robustness

to integrator drift. The process and measurement covariance matrices were set to Q = 1 and R = 1× 105.
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Figure 10. Steering angle inputs for each scenario

The following subsections present the results of the estimates obtained presented against ground truth references
generated in BikeSim. In Figures 11, 12 and 13, the acronyms ICP, DR, and KF denote Iterative Closest Point,
Dead-Reckon (of the INS velocity rate estimate) and Kalman Filter respectively.

Longitudinal Velocity
We observe from Figure 11 that the ICP estimate rests around the reference value, if not slightly underesti-
mating. This is an encouraging result as other estimation algorithms such as Optical Flow fail to register large
displacements between images which is not the case here. However, in the Slalom scenario, the variance is much
higher compared to the S-bend and DLC.
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Figure 11. Longitudinal velocity results

Lateral Velocity
Recall from the motivation that a key technical goal for our estimator is the reconstruction of the lateral velocity.
The results displayed in Figure 12 are encouraging: We note that in the Slalom scenario, the vision system
struggles to keep pace with the rapid succession of transients. However, this is compensated for by the INS
measurement where integrator drift is less of an issue due to the rapidly-varying input. We observe that the both
the INS and vision measurements track the reference very well in the S-Bend scenario.
Finally, we note that in the DLC the ICP estimate deviates slightly from the reference especially during transients
corresponding to sudden changes in lean (see Figure 9). In all cases, we note that the integrated INS alone
slowly drifts from the reference as the errors from the noise added to the accelerometer reading accumulate. As
hypothesized, our vision algorithm measurement successfully compensates for this drift and drags the filtered
estimate back toward the ground truth.

Yaw Rate
So far, there has been significant noise present in all the ICP estimates obtained. It is clear from Figure 13
that this noise is especially present in the yaw rate estimate obtained from the estimated rotation matrix in
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Figure 12. Lateral velocity results

Algorithm 2. While the mean of this noise appears to track the reference well, we note in the S-bend and DLC
scenarios that there is slight overshoot at the peaks of motion.
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Figure 13. Yaw rate results

Front Slip
Having obtained our velocity estimates, we re-express them in RV using (24) and pass the results to (6) and (7).
It should be noted that these expressions for front and rear slip are themselves linearized approximations of the
ground truth therefore there is an upper bound on achievable performance. Recall that a front slip larger than
the rear slip indicates under-steering: We observe from Figure 14 good tracking in the Slalom scenario where
front slip is highest. Note also from the steering inputs in Figure 10. that the majority of the angle between
direction and velocity in RCf is due to the steering angle. We note an underestimation in the S-bend and DLC.
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Figure 14. Front slip results

Rear Slip
The results for the rear slip angle are displayed in Figure 15. The S-bend and DLC estimates track much better
than their front slip counterparts though we note that the magnitude of the references here are more significant.
We observe that the estimate lags in the Slalom scenario.

DISCUSSION

The initial evaluation of our results is encouraging. Referring to Figures 12 we note that our results compare
favorably with the Kalman-based approach of Teerhuis and Jansen [21] despite there being no a priori model in
our estimator. Regarding performance against observer-based designs, note that the estimate during the peak
regions of the DLC outperforms the estimation by the UI-HOSM [11] while performing the same maneuver. This
comparison is of particular importance since the results in [11] were also obtained using BikeSim. Recall that
in [22], the absolute error magnitude in their observer lateral velocity estimation during a DLC using a nomi-
nal LPV model was just over 0.12m/s. We note an error in our DLC result of under 0.05m/s, outperforming
that paper’s LPV observer. Of particular importance is that while the control inputs of the scenarios in [22]
are generated using BikeSim, they are validated against a theoretical model. Thus, we can conclude that our
estimator outperforms theirs even in the best case. In [13], a highly sophisticated multi-model observer based on
Tagaki-Sugeno and Linear Matrix Inequalities (LMI) techniques is presented and demonstrates the most promis-
ing results for observer-based lateral velocity estimates to date. While their observer does reach the correct final
value in steady-state periods, it fails to reconstruct the waveforms of transients compared to our approach.

In the Motivation, we mentioned that longitudinal velocity can be recovered from the vehicle engine odometer
under the assumption that no longitudinal slip is present between the road and the tires. This is nevertheless
a harsh assumption to make, especially in road conditions where such slip is likely to be present such as wet
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Figure 15. Rear slip results

weather. For this work, we chose to work with constant longitudinal velocities since the primary motivation is
to reconstruct lateral motion and the front and rear slip angles. Future works on our algorithm should test its
ability to estimate a varying longitudinal velocity.

Earlier works published by our research team attempted to measure lateral velocity using only information from
BEV images of the center lane markers [23]. We identified two major issues with this approach which in part
motivated this new design: The sudden appearance and removal of transitioning lane markers entering the BEV
induced a large-amplitude low-frequency oscillation in the vision system measurement. We have overcome this
by using road surface detailing as tracked features as well as lane markers as explained in Section . The second
major issue was computational complexity: Producing a full grayscale BEV using image interpolation is ex-
tremely intensive for any application. We proposed to reduce complexity through image binarization. However,
this introduced a new source of noise into our measurement. Here, we transform only the features detected in
the camera images into the inverse perspective, greatly reducing computational complexity whilst simultaneously
decreasing noise.

Nonetheless, there is strong noise present in all of our ICP measurements originating outside of the sources dis-
cussed. A known issue with point registration is how one deals with outliers. A common technique is to detect
them using RAndom Sample Consensus (RANSAC) [24]: Future works on this approach should investigate the
influence of outliers on our results. We are also limited by the BikeSim software itself as the simulated IMU read-
ings from the physics engine and the simulated image stream from the visualizer are asynchronous. This leads
to imperfect IPM, especially at high roll angles and we hypothesize that this is the cause of the deviations from
the ground truth observed in Figures 12 and 13. It may be possible to reduce measurement noise by increasing
the sample rate of the video stream and the resolution of the camera.

As mentioned in the front slip results, there is an upper limit to the possible accuracy of the slip estimates using
(6) and (7). Nevertheless, our estimates do approximate the transient behavior well if under-estimating their
magnitude. It would be worthwhile in future works to implement our estimator in its current form as an ARAS
to detect critical steering scenarios and test it against simulations of motorcycle crashes in BikeSim.

CONCLUSIONS

In this article, we propose a method of estimating the velocity and wheel lateral slip angles of a motorcycle
traveling at high speed along a single-carriageway road. We extract feautures from images captured by a camera
fixed to the front of the motorcycle and use Harris corner detection to extract features. We remove the perspective
projection from the point sets using IPM and recover ego-motion using Iterative Closest. Finally, we obtain a
velocity estimate using sensor fusion with an Inertial Navigation System and a Kalman filter. We validated
our approach against three different BikeSim simulation scenarios and compared the obtained results with other
approaches. We conclude that our approach compares very well to the state of the art and surpasses it in a few
cases. We recommend that future works should investigate the effects of outliers, sensor resolution and frame
rate on the accuracy of our vision measurements. We will refine our algorithm in simulations under non-ideal
conditions such as rain, poor marker visibility, and a rough road surface. Furthermore, we will perform tests
under more diverse scenarios such as periods of longitudinal acceleration and simulated crashes. Eventually, we
hope to validate our approach using real-world data from an experimental P2WV rig situated at IBISC.
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