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ABSTRACT 
 
Mechatronic systems assist drivers in safe driving of cars more and more often. A vision of a totally automated car realizing 
many manoeuvres without driver’s participation becomes closer and closer. The lane change manoeuvre is one of the basic 
manoeuvres on the ground of which sequences of complex manoeuvres can be composed, e.g. vehicle passing or obstacle 
avoidance manoeuvre. For those reasons, automation of lane change manoeuvre appears to be essential for automation of vehicle 
driving and is a subject of numerous research studies. Within a research project, the authors have undertaken extensive analytical 
studies on application of active steering system EPS in automatic driving of a two-axis truck equipped with typical elements of 
ESC system and obstacle detectors, as well as road monitoring systems. 
The present paper focuses on theoretical aspects of the synthesis of an automatic controller for the EPS active steering system. 
Simulation studies of an automatically controlled lane change manoeuvre illustrate the application of the methodology. The basis 
for theoretical considerations and numerical studies is the mathematic model of the controlled system (vehicle) and the controller. 
A complex, detailed description of the dynamics of a two-axis truck, taking into account nonlinearities and vehicle motion in 3D 
space, is included in the simulation model. The model of the controller is based on a reference model which is significantly 
simplified and hence is highly effective for carrying out necessary computations in real time. An algorithm of the controller 
operating as a Kalman regulator in a closed loop system is developed on the basis of this model. The time decomposition of the 
automatic control process into two phases –lateral displacement of the vehicle and stabilization of its position – is an essential, 
original distinguishing feature of the algorithm. Thanks to this decomposition, the structure of the control system is relatively 
simple. Feedback signals provided by the sensors available in a typical ESC system (lateral acceleration, yaw velocity) are used 
in the control process. The vehicle reference model and resulting control algorithms are presented in the paper. Simulation results 
refer to a two-axis truck travelling with a constant velocity on a straight, uniform road. At certain time instant the vehicle starts 
executing the lane change manoeuvre. Simulations were carried out for a number of cases with varying model parameters. That 
allowed estimating the sensitivity of the control algorithm to both perturbations of vehicle’s physical and operational parameters 
and to perturbations of parameters related to the obstacle. The results of simulations show that the proposed concept of the 
vehicle automatic control performs well in computational tests. The method of automatic execution of the lane change manoeuvre 
presented in the paper can offer an attractive alternative for vehicle control engineers and researchers working in the fields of 
active steering systems of vehicles, including commercial trucks.  
 
INTRODUCTION 
 
Development of modern automotive technology results in an increasing use of mechatronic systems assisting drivers 
in safe driving of road vehicles. The prospect of a totally autonomous vehicle performing a range of manoeuvres 
without driver’s participation nears. The lane change manoeuvre is one of basic manoeuvres on the basis of which 
more complex manoeuvres such as vehicle overtaking or obstacle avoidance can be undertaken. Obstacle avoidance 
is necessary when an object suddenly appears on the vehicle path in a distance smaller than the estimated travel 
needed to stop. For these reasons, automation of the lane change manoeuvre is essential to achieve the goal of fully 
autonomous vehicle control. It is a subject of numerous research programs as well as prototype development and 
testing.  
Publications on automation of lane change manoeuvre usually refer to the concept of automatic control including 
optimal path planning and then trajectory tracking [2, 4, 9, 10, 11, 12]. Trajectory planning is sometimes treated as 
a problem of parametric optimization of heuristically assumed forms of the desired path (segments of sinusoidal 
function, composition of arcs, line segments, parabola segments etc.). Optimization of the desired path should not 
only achieve short manoeuvre duration, desired smoothness of the trajectory, limitation of side jerks, but also ensure 
that the planned path will be feasible for efficient trajectory control. As known, trajectory tracking errors depend on 
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the quality of the desired path. Trajectory tracking controllers proposed in publications cited above are based on 
known algorithms from the control theory. Obviously, parameters of the vehicle, as well as parameters of its steering 
system, have significant influence on the optimal path and the choice of the tracking controller [13, 14]. 
Within the research project [7], comprehensive analytical studies have been carried out on the application of the 
active steering system EPS (Electric Power System) in automatic driving of a commercial truck of medium load 
capacity. Considered traffic situations included suddenly appearing obstacle potentially causing collision. The truck 
under consideration was equipped with typical elements of ESC (Electronic Stability Control) and obstacle 
detectors, as well as road monitoring systems. 
This paper is based on a portion of the aforementioned studies [7]. It focuses on theoretical aspects of the synthesis 
of an automatic controller for the EPS active steering system. Simulation studies of an automatically controlled lane 
change manoeuvre illustrate the application of the methodology. 
 The basis for theoretical considerations and numerical studies is the mathematical model of the controlled system 
and the controller. A complex, detailed description of the dynamics of a two-axis truck, taking into account 
nonlinearities and vehicle motion in 3D space, is included in the simulation model representing the real system to be 
controlled. Complex nonlinear dynamics of the steering mechanism is included in the model, with free play and 
friction in the joints. The model of the controller is based on a simple reference model – known in the literature as 
a bicycle model of a car. Desired path as well as the structure and parameters of the controller are determined using 
this model. 
An essential, distinguishing feature of the control algorithm is the decomposition of the lane changing manoeuvre 
into two phases: vehicle turning to move swiftly into the adjacent lane and then stabilization in the direction of the 
new lane. Owing to this decomposition, the structure of the control algorithm is relatively simple. Feedback signals 
provided by the sensors available in a typical ESC system (lateral acceleration, yaw velocity) are used in the control 
process. The vehicle reference model and resulting control algorithms are presented in the paper. Simulation results 
refer to a two-axis commercial vehicle of medium load capacity travelling with a constant velocity on a straight, 
uniform road. At certain time instant the vehicle starts executing the lane change manoeuvre. Simulations were 
carried out for a number of cases with varying model parameters. That allowed estimating the sensitivity of the 
control algorithm to both perturbations of vehicle’s physical and operational parameters and to perturbations of 
parameters related to the obstacle. The results of simulations show that the proposed concept of the vehicle 
automatic control performs well in computational tests. 
 
LANE CHANGE MANOEUVRE IN THE FRAMEWORK OF THE CONTROL THEORY 
 
Assumptions 
 
An obstacle suddenly appears on a straight stretch of the road in front of the travelling vehicle. The vehicle starts 
braking (manual or automatic process) until the time instant the control system discovers that further braking 
inevitably leads to a crash. After automatic monitoring of obstacle surroundings, if conditions allow for that, the 
rotation of the steering wheel is activated automatically in order to avoid the obstacle while travelling with 
a constant velocity that was reached at the final stage of braking.  At the end of the manoeuvre vehicle should travel 
on the lane parallel to the primary lane. In that way, the control of the vehicle moves from the braking phase to the 
lane changing phase. 
The purpose of the study presented in this paper is to show the concept of the steering wheel controller that would 
execute the lane change manoeuvre once it was automatically initiated. The method of setting controller parameters 
knowing the parameters of the vehicle reference model and allowable variable ranges will also be presented. The 
often challenging strategy of decision making to activate the automatic lane change operation will not be considered. 
 
Strategy for Steering Wheel Rotation Control 
 
The control task involves two output variables – displacement of the centre of mass and angular position of the 
vehicle body in relation to the trajectory of the centre of mass – and is to be carried out with one control input 
(steering wheel rotation). It is convenient to divide the process of steering wheel control into two successive phases 
of “lateral displacement” and then “stabilization”. 
Realization of the task of vehicle lateral displacement allows for some level of vehicle yaw with respect to the 
roadway axis after required lateral displacement of the vehicle centre of mass has been achieved, ensuring obstacle 
avoidance with certain safety margin. The priority is on the fast execution of this phase of the manoeuvre.  
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The task of stabilization involves adjusting the angular orientation of the vehicle to become parallel to the roadway 
axis. Here, the priority is on accurately performing the procedure to ensure that the vehicle follows the new lane. 
Such decomposition of the control tasks is consistent with practice of driving a car by experienced race drivers. 
Control in the first phase of the process can be carried out partly in an open loop (“blindly”, “as quickly as 
possible”) by generating an appropriate steering wheel rotation. Accuracy at this phase of the manoeuvre is ensured 
by the use of the earlier identified reference model. An additional corrective control will also be present during this 
phase. Namely, the correction of the steering wheel rotation angle is to be carried out in a closed loop, through the 
comparison of the lateral displacement of the vehicle (according to the reference model) with the measured position. 
Control in the second phase must be carried out completely in the closed loop, by regulating the angular orientation 
of the vehicle with respect to the roadway axis. 
The concept of the control strategy based on the decomposition into two phases is shown in Fig.1. 
 

 
Figure 1. Decomposition of the lane changing manoeuvre. 

 
Theoretical validation of this control strategy is presented in the subsequent part of the paper. 
 
The Reference Model  
 
Theoretical considerations will be conducted using the bicycle model of a car. The model describes the lateral 
dynamics of the vehicle travelling with constant velocity in the presence of small disturbances. This model is used in 
many studies related to the automatic control of vehicles. The bicycle model concept is illustrated in Fig. 2. 
 

 
Figure 2. Concept of the bicycle model of a car. 

 
Nomenclature of model variables and parameters: 
t  – time (t = 0 denotes the start of control), 
δ(t)  – steer angle of front wheels, 
ψ(t)  – vehicle yaw angle, 
Ω(t)  – yaw velocity of the vehicle ( )()( tt ψ&=Ω ), 

U(t)  – lateral velocity of the vehicle in the local coordinate frame, 
V  – longitudinal velocity of the vehicle (constant) in the local coordinate frame, 
X(t), Y(t)  – vehicle centre of mass coordinates in the global coordinate frame, 
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m  – mass of the vehicle, 
J  – moment of inertia of the vehicle with respect to the vertical axis passing through its centre of mass, 
a, b  – distances from the front and rear wheel axes, respectively, to the projection of the centre of mass, 
kA, kB  – cornering stiffnesses at the front and rear wheel centres, respectively. 
 
The mathematical model for the subsequent formulation is represented by linearized equations of motion derived 
from the balance of forces and moments acting on a two-wheeled vehicle. The equations expressed in the moving 
coordinate frame are: 
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Transformation from the moving coordinate frame to the frame connected to the road is described by the following 
relations: 
 ∫Ω=

t
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0

)()( ττψ  (3) 

 ( ) ( ))(sin)()(cos)( ttUtVtX ψψ −=&  (4) 
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Trajectory of the vehicle’s centre of mass Y(X) can be determined from the following relationships: 
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The relationships (1-7) will be treated as an initial reference model of the vehicle. 
With small and short time duration disturbances occurring during obstacle avoidance it is allowed to use linearized 
form of the transformation equations. Applying the Taylor series approximation gives: 
 ( ) 1)(cos ≈tψ      ( ) )()(sin tt ψψ ≈  (8, 9) 

 ( ) 0)(sin)( ≈ttU ψ       ( ) )()(cos)( tUttU ≈ψ  (10, 11) 

Therefore, on the basis of (4-5): 
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and also: 
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After substitution into the equations of motion (1-2) and rearranging one gets: 
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The trajectory of the vehicle’s centre of mass Y(X) is determined by the relationships: 
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The above developed equations (17-20) will be treated as a simplified reference model of the vehicle. 
In the initial reference model, the relationships (1, 2, 3) are linear and therefore can be subjected to the Laplace 
transformation. Then, at zero initial conditions of variables U(t) and Ω(t), an equivalent notation of the reference 
model can be defined in the transfer function form with the operator variable s. 
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where transfer functions have standard forms: 
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The transfer function parameters can be described by the formulae: 
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Operational calculus cannot be applied to Eqs. (4) and (5) due to the presence of nonlinear terms. 
All relationships in the simplified reference model are linear and therefore the Laplace transformation can be applied 
and appropriate transfer functions can be determined. Then, at zero initial conditions of variables ( ) ( )tttY Ω,),( ψ& , an 

equivalent notation of the simplified reference model in the transfer function form can be obtained as follows: 
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Responses to the Step Input of Wheels Rotation 
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When the time responses to the step input are available, these formulae can be used for identification of unknown 
parameters of the reference model. 
 
Steady State Responses Y(t) and ψ(t) to the Sharp Pull of the Wheels in One and Next in the Opposing 
Direction 
 
The two-sided sharp pull of the steering wheel with a hold time T can be described by a combination of step 
functions 1(t) of wheels rotation (see Fig. 3): 
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Figure 3. Two-sided sharp pull of the wheels. 

 
An accurate analysis of the time histories of Y(t) and ψ(t) can be carried out on the basis of simulation results. The 
limits of ψ(t) and Y(t) at t → ∞ can be determined knowing the transform of the input function δ(t) and the 
appropriate transfer functions. For Y(t), due to the approximate character of the simplified reference model, this 
process will produce an estimated value. 
The Laplace transform of δ(t) defined in formula (40) is given by: 
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The meaning of the above results is that vehicle steer through a sharp pull of the steering wheel in one direction, 
followed by another pull in the opposite direction, causes the vehicle to change the lane of travel. This conclusion is 
also supported by observations of real vehicle behaviour. For the development of the controller, it is crucial to note 
that according to the reference model on the new lane the vehicle will move with zero yaw angle. Of course, due to 
the presence of disturbances and imperfections of the reference model after reaching the steady state the vehicle may 
be moving along a straight path with nonzero yaw angle. Eliminating that error will be the subject of the corrective 
action of the controller. 
To achieve the intended lane change represented by the lateral distance Y0, it is necessary to appropriately choose 
the time duration T of the control impulse (square relationship) and its value δ0 (linear relationship). In this process 
it is necessary to take into account the value of the amplification parameter GΩδ0 and vehicle velocity V. 
The reference model proposed above can be used directly in the control of the trajectory of the vehicle centre of 
mass (the first phase of the manoeuvre) as well as in the vehicle yaw angle control (the second phase). 
 
Control of the Lateral Displacement of the Vehicle Mass Centre 
 
According to the proposed  control approach, in the first phase of the process, the control of the steering wheel 
rotation angle will be executed in the open loop – on the basis of the reference model, taking into account signal 
limitations and minimization of the manoeuvre duration time. At the same time, the corrective action will be carried 
out based on the principles of automatic regulation. Accuracy of this operation should be ensured mostly by the 
quality of the identified reference model. The diagram of the control system for this phase is shown in Fig. 4. 
 

 
Figure 4. Block diagram of the automatic control system in Phase I. 
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     Generator of steering wheel angle and reference trajectory   Reference time profiles δR(t) and YR(t) are 
generated. 
The reference time profile of vehicle lateral displacement YR(t) that ensures obstacle avoidance is determined by 
generation of the control input in the form presented in Eq. (40), with parameters δ0 and T chosen such that the 
conditions 

dopyty &&&& ≤)(  and 
dopt ψψ && ≤)(  are satisfied, and the steady state is achieved within the time not exceeding the 

allowed value resulting from current vehicle velocity and the distance from the obstacle. For the selection of δ0 and 
T, trajectory optimization can be used, for example with the objective to achieve the shortest time to reach the steady 
state. Such selection and representing the input function parameters in the tabular form are to be carried out off-line 
on the basis of simulations, for a broad range of design and operational parameters present in the initial reference 
model. The simplified reference model can facilitate that process.  
 
     The regulator   The regulator can be developed on the basis of the classical control theory, or with the use of the 
optimal control theory applied to the linear-quadratic problem. As known, regulators determined from the solution 
of linear-quadratic problems are usually very effective and relatively simple for implementation. Such an approach 
is presented below. 
The linear-quadratic problem is formulated as follows. For the model in the state-space matrix form  
 )()()( ttt BuAxx +=&   (44) 

with initial conditions 0x =)0(  find the control vector u(t) that minimizes the functional: 
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with P and R – positively defined weight matrices. 
According to Kalman theorem [1] the solution  
of the linear-quadratic problem is: 
 )()(ˆ 1 tt T KxBRu −−=  (46) 

where K –symmetric matrix satisfying Ricatti equation: PKKBRBKAKA =+−− TT  (47) 
The meaning of this solution is that the control vector is computed in the closed loop system, with feedback 
parameters depending on the model and the objective weight matrices, and determined as the solution of the 
nonlinear algebraic Ricatti equation.  
In order to apply the theory of linear-quadratic systems it is necessary to formulate the linear mathematical model of 
the object in the state-space form. The control performance index should be presented in the form of integral 
functional with quadratic forms. Note that the earlier determined transfer function GYδ(s) describes also the 
dynamics for the perturbed states: 

)()( ttR δδδ −=Δ  and )()()( ttYtYY R ε=−=Δ  (tracking error), and therefore one also has: 
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For the purpose of illustrating the method by analytical means the simplified reference model will be used together 
with simplified form of the transfer function:  
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The model that corresponds to such transfer function has the following state-space form: 
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where 
 )()(1 tYtx Δ=  )()(2 tYtx &Δ=  )()( 0 tVGtu δδ Δ= Ω  (51) 

The control performance index can be defined as: 
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In the typical notation of the linear-quadratic problem one gets: 
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The linear-quadratic problem has a solution according to Eqs. (46) and (47). For the considered case: 
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Carrying matrix operations in Eq. (55) leads to the equation: 
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Considering stability requirements one finally gets: 
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Substituting calculated coefficients into Eq. (46) gives: 
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Hence 
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In the operator domain: 
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The transfer function of the proportional-plus-derivative regulator (PD): 
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With the use of the vehicle lateral acceleration the controller becomes the regulator with integration. 
 
Stabilization of the Yaw Angle of the Vehicle 
 
Following the earlier described concept of vehicle control, in the second phase of the manoeuvre the control of the 
steering wheel rotation will be carried out as in the regulation system. Considering possible unification of the control 
system, it is useful to set the block structure of the controller in the form similar to the first phase controller. It is 
shown in Fig. 5. 
In this case the generator of reference signals has a trivial form: 
 ψR(t) = 0     δR(t)=0  (63, 64) 
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Figure 5. Block diagram of the automatic control system in Phase II. 

 
The regulator adjusting the steering wheel rotation angle can be developed in the way similar to Phase I.  Note that 
in this case the transfer function GΩδ(s), determined from the initial reference model, can be also used for the 
description of the dynamics with angular perturbations: 
 )()()( ttt R δδδ −=Δ  and )()(0 tt εψψ =−=Δ  (regulation error), and thus one gets: 
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Subsequent development follows an analogous path to the already presented and is omitted in this paper. 
Note that due to identical structures of the controllers for the first and second phases of the manoeuvre, an universal 
controller device can be used, with a switchable algorithms and changing reference and feedback signals. 
The developed algorithms of the controller, generating the reference signals and error feedback terms, constitute the 
basis of the active steering system controller. In the simplest approach, the steering wheel rotation angle δH(t) can be 
treated as a scaled version (through the steering gear ratio) of the steer angle of the wheels δ(t). In the more 
comprehensive solutions, additional corrective terms can be added in order to take into account the dynamics and 
nonlinearities of the real steering mechanism. 
 
SIMULATION RESULTS 
 
Verification and validation of the proposed control approach was carried out through numerical simulations in which 
a comprehensive model of vehicle dynamics was used. That model was treated as a “real” vehicle. The model of 
a commercial truck [5,6] was adapted for that purpose and used in simulations. It represents a complex, 3D model of 
a two-axis commercial truck of medium load capacity, having twenty degrees of freedom, and built on the basis of 
studies and observations of the real vehicle (STAR 1142). The active steering system included in the model takes 
into account its geometry, kinematics, dynamics as well as elastic and damping properties. The tire model proposed 
by Dugoff, Fancher, Segel [3], completed with recommendations resulting from the research conducted under the 
guidance of Mitschke [7], was used for the description of interaction between vehicle tires and roadway surface. An 
important advantage of this tire model is that in spite of relatively simple mathematical formulation it allows for an 
easy introduction of vehicle parameters (traction coefficient, velocity, radial loads) and makes it possible to simulate 
vehicle motion in the full skid condition. 
The model of the truck was subjected to a broad and thorough experimental verification [5]. The results obtained 
during tests of the real vehicle were used for the experimental verification of the model. Typical manoeuvres 
included driving along a circular path in steady conditions, quick turn of the steering wheel while driving straight 
ahead and braking while driving along a straight road and braking while turning. In order to determine the 
parameters of the tire model, thorough experimental tests of dynamic characteristics of vehicle tires were carried out 
on a drum dyno and with a dynamometer trailer. 
Effectiveness of the control approach presented in this paper has been evaluated through simulations that involved 
avoiding suddenly appearing obstacle through single lane change on a shortest distance possible. During numerical 
experiments it was necessary to tune the values of parameters p11, p22 and r (Eq. 60). Adjusting those values was 
done by trial and error. A number of obstacle avoidance manoeuvres with different settings were carried out. The 
parameters that were changing in the consecutive tests included the initial velocity of the vehicle (in the range of 
V=40-80km/h), the friction coefficient between the tires and the road surface (in the range of μ=0.1-0.5) and the 
weight of the load in the cargo section of the truck (not loaded, partly loaded and fully loaded). The objective was to 
find the settings that would allow successful completion of the obstacle avoidance manoeuvre in all trials that were 
conducted.  
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Figure 6. The results of the simulation studies – the assigned (broken line) and realized 

(solid line) trajectory of the car’s centre of mass. 
 



 
 

Gidlewski 11 
 

The obstacle avoidance manoeuvre, according to the earlier described approach, was implemented in two phases. 
The controller shown in Fig. 4 was used in the first phase. In that phase, the desired trajectories YR(t) of the vehicle 
centre of mass had been generated using the bicycle model of the vehicle and Eq. (40). The time profiles of the 
steering wheel rotation angle δHR(t) had been determined using Eq. (40) and the mean value of the steering system 
ratio. For each test, the values of variables T and δ0 (Fig. 3) were determined taking into account the limit value of 
the radius of the circular path on which the vehicle could move without the loss of lateral traction. The lateral 
displacement Y0=3 m of vehicle’s centre of mass to the target lane was used. The controller shown in Fig. 5 was 
used in the second phase of the manoeuvre. In that phase, the vehicle yaw angle was set to zero (ψ(t)=0) and the 
steering wheel rotation angle was assigned as δHR=0. In both phases, the instantaneous  value of the steering wheel 
rotation angle δH(t) taken as the sum of the assigned value δHR(t) and the value ΔδH(t) computed by the regulator was 
limited by the allowable values of vehicle velocity and the values of steering wheel angular acceleration. In all 
simulations that were carried out the controller II (Fig. 5) was taking over the control of the steering wheel rotation 
angle after the time period of t1=1.5T (Fig. 3). 
The results of simulations have shown that in all tests that were carried out the obstacle avoidance manoeuvre was 
accomplished successfully. A portion of simulation results is presented in Fig. 6. They were obtained for the fully 
loaded truck, with the low position of the centre of mass, on slippery pavements (friction coefficient of μ =0.1-0.3), 
and with vehicle velocities of 60-80km/h. 
The automatically controlled vehicle was able to avoid the obstacle without losing directional stability, even though 
the conditions of vehicle operation were changing in a broad range. Therefore, it can be stated that the proposed 
concept of control and the developed regulators proved to be insensitive to varying road conditions, and with that, 
the control approach appeared to be effective in realization of the lane change manoeuvre on the shortest path 
possible. 
 
CONCLUSIONS AND CLOSING REMARKS 
 
The adopted reference model of the lateral dynamics of the vehicle in its initial and simplified versions seems to 
provide an accepted basis for the development of controllers that automate the lane change manoeuvre. The 
proposed method of the decomposition of the control leads to two identical structures of the controller for both 
phases of the process. The results of simulations showing the use of such controller for the control of the 
commercial truck prove the correct direction of the research. 
The method of automatic execution of the lane change manoeuvre presented in the paper can offer an attractive 
alternative for vehicle control engineers and researchers working in the fields of automatic steering systems and 
vehicle active safety systems. The results are especially important because they illustrate the application of the 
methodology for the case of a commercial truck. 
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